竞赛保研 基于CNN实现谣言检测 - python 深度学习 机器学习

文章目录

  • 1 前言
    • 1.1 背景
  • 2 数据集
  • 3 实现过程
  • 4 CNN网络实现
  • 5 模型训练部分
  • 6 模型评估
  • 7 预测结果
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于CNN实现谣言检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1.1 背景

社交媒体的发展在加速信息传播的同时,也带来了虚假谣言信息的泛滥,往往会引发诸多不安定因素,并对经济和社会产生巨大的影响。

2 数据集

本项目所使用的数据是从新浪微博不实信息举报平台抓取的中文谣言数据,数据集中共包含1538条谣言和1849条非谣言。

如下图所示,每条数据均为json格式,其中text字段代表微博原文的文字内容。

在这里插入图片描述

每个文件夹里又有很多新闻文本。

在这里插入图片描述
每个文本又是json格式,具体内容如下:

在这里插入图片描述

3 实现过程

步骤入下:

*(1)解压数据,读取并解析数据,生成all_data.txt
*(2)生成数据字典,即dict.txt
*(3)生成数据列表,并进行训练集与验证集的划分,train_list.txt 、eval_list.txt
*(4)定义训练数据集提供器train_reader和验证数据集提供器eval_reader

import zipfile
import os
import io
import random
import json
import matplotlib.pyplot as plt
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Linear, Embedding
from paddle.fluid.dygraph.base import to_variable#解压原始数据集,将Rumor_Dataset.zip解压至data目录下
src_path="/home/aistudio/data/data36807/Rumor_Dataset.zip" #这里填写自己项目所在的数据集路径
target_path="/home/aistudio/data/Chinese_Rumor_Dataset-master"
if(not os.path.isdir(target_path)):z = zipfile.ZipFile(src_path, 'r')z.extractall(path=target_path)z.close()#分别为谣言数据、非谣言数据、全部数据的文件路径
rumor_class_dirs = os.listdir(target_path+"非开源数据集") # 这里填写自己项目所在的数据集路径
non_rumor_class_dirs = os.listdir(target_path+"非开源数据集")
original_microblog = target_path+"非开源数据集"
#谣言标签为0,非谣言标签为1
rumor_label="0"
non_rumor_label="1"#分别统计谣言数据与非谣言数据的总数
rumor_num = 0
non_rumor_num = 0
all_rumor_list = []
all_non_rumor_list = []#解析谣言数据
for rumor_class_dir in rumor_class_dirs: if(rumor_class_dir != '.DS_Store'):#遍历谣言数据,并解析with open(original_microblog + rumor_class_dir, 'r') as f:rumor_content = f.read()rumor_dict = json.loads(rumor_content)all_rumor_list.append(rumor_label+"\t"+rumor_dict["text"]+"\n")rumor_num +=1
#解析非谣言数据
for non_rumor_class_dir in non_rumor_class_dirs: if(non_rumor_class_dir != '.DS_Store'):with open(original_microblog + non_rumor_class_dir, 'r') as f2:non_rumor_content = f2.read()non_rumor_dict = json.loads(non_rumor_content)all_non_rumor_list.append(non_rumor_label+"\t"+non_rumor_dict["text"]+"\n")non_rumor_num +=1print("谣言数据总量为:"+str(rumor_num))
print("非谣言数据总量为:"+str(non_rumor_num))#全部数据进行乱序后写入all_data.txt
data_list_path="/home/aistudio/data/"
all_data_path=data_list_path + "all_data.txt"
all_data_list = all_rumor_list + all_non_rumor_listrandom.shuffle(all_data_list)#在生成all_data.txt之前,首先将其清空
with open(all_data_path, 'w') as f:f.seek(0)f.truncate() with open(all_data_path, 'a') as f:for data in all_data_list:f.write(data) 
print('all_data.txt已生成')

在这里插入图片描述

接下来就是生成数据字典。


# 生成数据字典
def create_dict(data_path, dict_path):
with open(dict_path, ‘w’) as f:
f.seek(0)
f.truncate()

    dict_set = set()# 读取全部数据with open(data_path, 'r', encoding='utf-8') as f:lines = f.readlines()# 把数据生成一个元组for line in lines:content = line.split('\t')[-1].replace('\n', '')for s in content:dict_set.add(s)# 把元组转换成字典,一个字对应一个数字dict_list = []i = 0for s in dict_set:dict_list.append([s, i])i += 1# 添加未知字符dict_txt = dict(dict_list)end_dict = {"": i}dict_txt.update(end_dict)# 把这些字典保存到本地中with open(dict_path, 'w', encoding='utf-8') as f:f.write(str(dict_txt))print("数据字典生成完成!",'\t','字典长度为:',len(dict_list))

我们可以查看一下dict_txt的内容

在这里插入图片描述

接下来就是数据列表的生成


# 创建序列化表示的数据,并按照一定比例划分训练数据与验证数据
def create_data_list(data_list_path):

    with open(os.path.join(data_list_path, 'dict.txt'), 'r', encoding='utf-8') as f_data:dict_txt = eval(f_data.readlines()[0])with open(os.path.join(data_list_path, 'all_data.txt'), 'r', encoding='utf-8') as f_data:lines = f_data.readlines()i = 0with open(os.path.join(data_list_path, 'eval_list.txt'), 'a', encoding='utf-8') as f_eval,\open(os.path.join(data_list_path, 'train_list.txt'), 'a', encoding='utf-8') as f_train:for line in lines:title = line.split('\t')[-1].replace('\n', '')lab = line.split('\t')[0]t_ids = ""if i % 8 == 0:for s in title:temp = str(dict_txt[s])t_ids = t_ids + temp + ','t_ids = t_ids[:-1] + '\t' + lab + '\n'f_eval.write(t_ids)else:for s in title:temp = str(dict_txt[s])t_ids = t_ids + temp + ','t_ids = t_ids[:-1] + '\t' + lab + '\n'f_train.write(t_ids)i += 1print("数据列表生成完成!")

定义数据读取器


def data_reader(file_path, phrase, shuffle=False):
all_data = []
with io.open(file_path, “r”, encoding=‘utf8’) as fin:
for line in fin:
cols = line.strip().split(“\t”)
if len(cols) != 2:
continue
label = int(cols[1])

            wids = cols[0].split(",")all_data.append((wids, label))if shuffle:if phrase == "train":random.shuffle(all_data)def reader():for doc, label in all_data:yield doc, labelreturn readerclass SentaProcessor(object):def __init__(self, data_dir,):self.data_dir = data_dirdef get_train_data(self, data_dir, shuffle):return data_reader((self.data_dir + "train_list.txt"), "train", shuffle)def get_eval_data(self, data_dir, shuffle):return data_reader((self.data_dir + "eval_list.txt"), "eval", shuffle)def data_generator(self, batch_size, phase='train', shuffle=True):if phase == "train":return paddle.batch(self.get_train_data(self.data_dir, shuffle),batch_size,drop_last=True)elif phase == "eval":return paddle.batch(self.get_eval_data(self.data_dir, shuffle),batch_size,drop_last=True)else:raise ValueError("Unknown phase, which should be in ['train', 'eval']")

总之在数据处理这一块需要我们注意的是一共生成以下的几个文件。

在这里插入图片描述

4 CNN网络实现

接下来就是构建以及配置卷积神经网络(Convolutional Neural Networks,
CNN),开篇也说了,其实这里有很多模型的选择,之所以选择CNN是因为让我们熟悉CNN的相关实现。 输入词向量序列,产生一个特征图(feature
map),对特征图采用时间维度上的最大池化(max pooling over
time)操作得到此卷积核对应的整句话的特征,最后,将所有卷积核得到的特征拼接起来即为文本的定长向量表示,对于文本分类问题,将其连接至softmax即构建出完整的模型。在实际应用中,我们会使用多个卷积核来处理句子,窗口大小相同的卷积核堆叠起来形成一个矩阵,这样可以更高效的完成运算。另外,我们也可使用窗口大小不同的卷积核来处理句子。具体的流程如下:

在这里插入图片描述
首先我们构建单层CNN神经网络。

#单层class SimpleConvPool(fluid.dygraph.Layer):def __init__(self,num_channels, # 通道数num_filters,  # 卷积核数量filter_size,  # 卷积核大小batch_size=None): # 16super(SimpleConvPool, self).__init__()self.batch_size = batch_sizeself._conv2d = Conv2D(num_channels = num_channels,num_filters = num_filters,filter_size = filter_size,act='tanh')self._pool2d = fluid.dygraph.Pool2D(pool_size = (150 - filter_size[0]+1,1),pool_type = 'max',pool_stride=1)def forward(self, inputs):# print('SimpleConvPool_inputs数据纬度',inputs.shape) # [16, 1, 148, 128]x = self._conv2d(inputs)x = self._pool2d(x)x = fluid.layers.reshape(x, shape=[self.batch_size, -1])return xclass CNN(fluid.dygraph.Layer):def __init__(self):super(CNN, self).__init__()self.dict_dim = train_parameters["vocab_size"]self.emb_dim = 128   #emb纬度self.hid_dim = [32]  #卷积核数量self.fc_hid_dim = 96  #fc参数纬度self.class_dim = 2    #分类数self.channels = 1     #输入通道数self.win_size = [[3, 128]]  # 卷积核尺寸self.batch_size = train_parameters["batch_size"] self.seq_len = train_parameters["padding_size"]self.embedding = Embedding( size=[self.dict_dim + 1, self.emb_dim],dtype='float32', is_sparse=False)self._simple_conv_pool_1 = SimpleConvPool(self.channels,self.hid_dim[0],self.win_size[0],batch_size=self.batch_size)self._fc1 = Linear(input_dim = self.hid_dim[0],output_dim = self.fc_hid_dim,act="tanh")self._fc_prediction = Linear(input_dim = self.fc_hid_dim,output_dim = self.class_dim,act="softmax")def forward(self, inputs, label=None):emb = self.embedding(inputs) # [2400, 128]# print('CNN_emb',emb.shape)  emb = fluid.layers.reshape(   # [16, 1, 150, 128]emb, shape=[-1, self.channels , self.seq_len, self.emb_dim])# print('CNN_emb',emb.shape)conv_3 = self._simple_conv_pool_1(emb)fc_1 = self._fc1(conv_3)prediction = self._fc_prediction(fc_1)if label is not None:acc = fluid.layers.accuracy(prediction, label=label)return prediction, accelse:return prediction

接下来就是参数的配置,不过为了在模型训练过程中更直观的查看我们训练的准确率,我们首先利用python的matplotlib.pyplt函数实现一个可视化图,具体的实现如下:


def draw_train_process(iters, train_loss, train_accs):
title=“training loss/training accs”
plt.title(title, fontsize=24)
plt.xlabel(“iter”, fontsize=14)
plt.ylabel(“loss/acc”, fontsize=14)
plt.plot(iters, train_loss, color=‘red’, label=‘training loss’)
plt.plot(iters, train_accs, color=‘green’, label=‘training accs’)
plt.legend()
plt.grid()
plt.show()

5 模型训练部分


def train():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)): # 因为要进行很大规模的训练,因此我们用的是GPU,如果没有安装GPU的可以使用下面一句,把这句代码注释掉即可
# with fluid.dygraph.guard(place = fluid.CPUPlace()):

        processor = SentaProcessor( data_dir="data/")train_data_generator = processor.data_generator(batch_size=train_parameters["batch_size"],phase='train',shuffle=True)model = CNN()sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=train_parameters["adam"],parameter_list=model.parameters())steps = 0Iters,total_loss, total_acc = [], [], []for eop in range(train_parameters["epoch"]):for batch_id, data in enumerate(train_data_generator()):steps += 1#转换为 variable 类型doc = to_variable(np.array([np.pad(x[0][0:train_parameters["padding_size"]],  #对句子进行padding,全部填补为定长150(0, train_parameters["padding_size"] - len(x[0][0:train_parameters["padding_size"]])),'constant',constant_values=(train_parameters["vocab_size"])) # 用  的id 进行填补for x in data]).astype('int64').reshape(-1))#转换为 variable 类型label = to_variable(np.array([x[1] for x in data]).astype('int64').reshape(train_parameters["batch_size"], 1))model.train() #使用训练模式prediction, acc = model(doc, label)loss = fluid.layers.cross_entropy(prediction, label)avg_loss = fluid.layers.mean(loss)avg_loss.backward()sgd_optimizer.minimize(avg_loss)model.clear_gradients()if steps % train_parameters["skip_steps"] == 0:Iters.append(steps)total_loss.append(avg_loss.numpy()[0])total_acc.append(acc.numpy()[0])print("eop: %d, step: %d, ave loss: %f, ave acc: %f" %(eop, steps,avg_loss.numpy(),acc.numpy()))if steps % train_parameters["save_steps"] == 0:save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps)print('save model to: ' + save_path)fluid.dygraph.save_dygraph(model.state_dict(),save_path)# breakdraw_train_process(Iters, total_loss, total_acc)

训练的过程以及训练的结果如下:

在这里插入图片描述

6 模型评估


def to_eval():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):
processor = SentaProcessor(data_dir=“data/”) #写自己的路径

        eval_data_generator = processor.data_generator(batch_size=train_parameters["batch_size"],phase='eval',shuffle=False)model_eval = CNN() #示例化模型model, _ = fluid.load_dygraph("data//save_dir_180.pdparams") #写自己的路径model_eval.load_dict(model)model_eval.eval() # 切换为eval模式total_eval_cost, total_eval_acc = [], []for eval_batch_id, eval_data in enumerate(eval_data_generator()):eval_np_doc = np.array([np.pad(x[0][0:train_parameters["padding_size"]],(0, train_parameters["padding_size"] -len(x[0][0:train_parameters["padding_size"]])),'constant',constant_values=(train_parameters["vocab_size"]))for x in eval_data]).astype('int64').reshape(-1)eval_label = to_variable(np.array([x[1] for x in eval_data]).astype('int64').reshape(train_parameters["batch_size"], 1))eval_doc = to_variable(eval_np_doc)eval_prediction, eval_acc = model_eval(eval_doc, eval_label)loss = fluid.layers.cross_entropy(eval_prediction, eval_label)avg_loss = fluid.layers.mean(loss)total_eval_cost.append(avg_loss.numpy()[0])total_eval_acc.append(eval_acc.numpy()[0])print("Final validation result: ave loss: %f, ave acc: %f" %(np.mean(total_eval_cost), np.mean(total_eval_acc) ))   

评估准确率如下:

在这里插入图片描述

7 预测结果


# 获取数据
def load_data(sentence):
# 读取数据字典
with open(‘data/dict.txt’, ‘r’, encoding=‘utf-8’) as f_data:
dict_txt = eval(f_data.readlines()[0])
dict_txt = dict(dict_txt)
# 把字符串数据转换成列表数据
keys = dict_txt.keys()
data = []
for s in sentence:
# 判断是否存在未知字符
if not s in keys:
s = ‘’
data.append(int(dict_txt[s]))
return data

train_parameters["batch_size"] = 1
lab = [ '谣言', '非谣言']with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):data = load_data('兴仁县今天抢小孩没抢走,把孩子母亲捅了一刀,看见这车的注意了,真事,车牌号辽HFM055!!!!!赶紧散播! 都别带孩子出去瞎转悠了 尤其别让老人自己带孩子出去 太危险了 注意了!!!!辽HFM055北京现代朗动,在各学校门口抢小孩!!!110已经 证实!!全市通缉!!')data_np = np.array(data)data_np = np.array(np.pad(data_np,(0,150-len(data_np)),"constant",constant_values =train_parameters["vocab_size"])).astype('int64').reshape(-1)infer_np_doc = to_variable(data_np)model_infer = CNN()model, _ = fluid.load_dygraph("data/save_dir_900.pdparams")model_infer.load_dict(model)model_infer.eval()result = model_infer(infer_np_doc)print('预测结果为:', lab[np.argmax(result.numpy())])

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/238474.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

百分比-保留2位小数

有时候工作中有这样的需求,统计各种类型的占比,因此记录一下求百分比的小工具,以后方便自己用到随时来查 /*** 转成百分数* 当前数除以总数* param num1-当前数 ,num2-总数 num1/num2* return rate 保留2位小数的*/public static String …

4.使用 Blazor 构建 Web 应用程序

微软官方培训 了解如何通过 Blazor Web 用户界面框架构建你的第一个 Web 应用程序。 https://learn.microsoft.com/zh-cn/training/paths/build-web-apps-with-blazor/?viewaspnetcore-8.0 8个模块 目录 微软官方培训 1.使用 Blazor 进行 Web 开发的简介 2.使用 Blazor…

Vue中为什么data属性是一个函数而不是一个对象?(看完就会了)

文章目录 一、实例和组件定义data的区别二、组件data定义函数与对象的区别三、原理分析四、结论 一、实例和组件定义data的区别 vue实例的时候定义data属性既可以是一个对象,也可以是一个函数 const app new Vue({el:"#app",// 对象格式data:{foo:&quo…

安装 PyCharm 2021.1 保姆级教程

作者&#xff1a;billy 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 前言 目前能下载到的最新版本是 PyCharm 2021.1。 请注意对应 Python 的版本&#xff1a; Python 2: 2.7Python 3: >3.6, <3.11…

22 3GPP在SHF频段基于中继的5G高速列车场景中的标准化

文章目录 信道模型实验μ参考信号初始接入方法波形比较 RRH&#xff1a;remote radio head 远程无线头 HTS&#xff1a;high speed train 高速移动列车 信道模型 考虑搭配RRH和车载中继站之间的LOS路径以及各种环境&#xff08;开放或峡谷&#xff09;&#xff0c;在本次实验场…

分享5款为你生活带来便捷的小工具

​ 生活需要一些小巧而贴心的工具&#xff0c;它们能够在细节处为我们带来便捷。这五款工具简洁而实用&#xff0c;看看它们是否适合融入你的生活。 1.图片压缩——TinyPNG ​ TinyPNG是一款图片压缩工具&#xff0c;可以智能地减少WebP、PNG和JPEG图片的文件大小。TinyPNG通…

Jenkins持续集成自动化测试

执行集成构建 持续&#xff0c;自动地构建&测试软件项目代码管理&#xff08;git/svn&#xff09;>编译&#xff08;maven/ant/gradle&#xff09;>打包>测试环境部署>自动化测试 研发体系中的迭代流程 1 源码分支管理&#xff1a; git或者svn, 将不同开发编…

【限时Free】新增普刊!计算机/社科/医学等多领域,1个月见刊!

普刊极速发表 1 计算机类 World Journal of Information Technology 【Print ISSN】2959-9903&#xff1b; 【Online ISSN】2959-9911&#xff1b; 【出版社】Upubscience Publisher出版社 【发表周期】1-2个月左右出刊&#xff1b; 【接收领域】专注于涉及技术和IT管理的…

用于从未配对的3D医学图像中进行多模式分割的统一生成对抗性网络

Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images 用于从未配对的3D医学图像中进行多模式分割的统一生成对抗性网络背景积累 贡献难点&#xff1a;贡献&#xff1a; 实验Effect of the weight λshape&#xff08;形状损…

Android MVI架构之UI开发指南

Android MVI架构之UI开发指南 在整个应用程序架构中&#xff0c;UI层并不是唯一的层级。除了UI层之外&#xff0c;您还可以找到数据层&#xff0c;有时还有领域层。根据Android架构文档&#xff1a; UI层在屏幕上显示数据。数据层暴露应用程序数据&#xff0c;并包含大部分业…

自动评估作业,支持订正最终得分、查看关联代码|ModelWhale 版本更新

冬至时节&#xff0c;2023 已进入尾声&#xff0c;ModelWhale 于今日迎来新一轮的版本更新&#xff0c;与大家一起静候新年的到来。 本次更新中&#xff0c;ModelWhale 主要进行了以下功能迭代&#xff1a; 自动评估作业 新增 提交代码&#xff08;团队版✓ &#xff09;新增…

ARM GIC(四) gicv3架构基础

GICv3架构是GICv2架构的升级版&#xff0c;增加了很多东西。变化在于以下&#xff1a; 使用属性层次&#xff08;affinity hierarchies&#xff09;&#xff0c;来对core进行标识&#xff0c;使gic支持更多的core 将cpu interface独立出来&#xff0c;用户可以将其设计在core…

Vue CLI 设置 publicPath:打包后的应用可部署在任意路径

前言 领导要重新部署多个应用环境&#xff0c;且不受路径层级影响。 于是找到了 Vue CLI 配置 publicpath 配置说明 下图所示&#xff1a; / &#xff1a;默认值&#xff0c;应用部署在根路径上&#xff1b;./&#xff1a;注意前面加了一个点&#xff0c;应用可部署在任意路…

算法基础之扩展欧几里得算法

扩展欧几里得算法 核心思想&#xff1a;裴蜀定理 : 欧几里得算法: 辗转相除法求最大公约数 传入参数(int a,int b,int &x,int &y) 递归(int b,int a%b,int y,int x) xy换位置 方便计算(推公式) #include<iostream>#include<algorithm>using namespac…

yolo-nas无人机高空红外热数据小目标检测(教程+代码)

前言 YOLO-NAS是目前最新的YOLO目标检测模型。从一开始&#xff0c;它就在准确性方面击败了所有其他 YOLO 模型。与之前的 YOLO 模型相比&#xff0c;预训练的 YOLO-NAS 模型能够以更高的准确度检测更多目标。但是我们如何在自定义数据集上训练 YOLO NAS&#xff1f; 这将是我…

效果图云渲染是什么意思?如何渲染出照片级别的效果图?

​在当前的建筑规划、室内装修以及电影视效制作等行业内&#xff0c;制作高质量的效果图起着至关重要的作用&#xff0c;因为它能够给予观众或客户极为逼真和吸引人的视觉体验。在此篇文章中&#xff0c;我们将深入了解什么是云端效果图渲染&#xff0c;并探讨如何运用Renderbu…

MySQL 分表真的能提高查询效率?

背景 首先我们以InnoDB引擎&#xff0c;BTree 3层为例。我们需要先了解几个知识点&#xff1a;页的概念、InnoDB数据的读取方式、什么是树搜索&#xff1f;、一次查询花费的I/O次数&#xff0c;跨页查询。 页的概念 索引树的页&#xff08;page&#xff09;是指存储索引数据…

7-1 建立二叉搜索树并查找父结点(PTA - 数据结构)

按输入顺序建立二叉搜索树&#xff0c;并搜索某一结点&#xff0c;输出其父结点。 输入格式: 输入有三行&#xff1a; 第一行是n值&#xff0c;表示有n个结点&#xff1b; 第二行有n个整数&#xff0c;分别代表n个结点的数据值&#xff1b; 第三行是x&#xff0c;表示要搜索值…

Kylin基础知识点解析与应用探索

目录 学习目标&#xff1a; 学习内容&#xff1a; 学习时间&#xff1a; 学习产出&#xff1a; Kylin简介 什么是Kylin Kylin的历史和发展 Kylin在大数据领域的地位和作用 Kylin架构 Kylin的组成部分和模块 Kylin的工作原理和流程 Kylin与其他大数据组件的关系和集成 Kylin功能…

链接未来:深入理解链表数据结构(二.c语言实现带头双向循环链表)

上篇文章简述讲解了链表的基本概念并且实现了无头单向不循环链表&#xff1a;链接未来&#xff1a;深入理解链表数据结构&#xff08;一.c语言实现无头单向非循环链表&#xff09;-CSDN博客 那今天接着给大家带来带头双向循环链表的实现&#xff1a; 文章目录 一.项目文件规划…