二叉树题目:输出二叉树

文章目录

  • 题目
    • 标题和出处
    • 难度
    • 题目描述
      • 要求
      • 示例
      • 数据范围
  • 前言
  • 解法一
    • 思路和算法
    • 代码
    • 复杂度分析
  • 解法二
    • 思路和算法
    • 代码
    • 复杂度分析

题目

标题和出处

标题:输出二叉树

出处:655. 输出二叉树

难度

6 级

题目描述

要求

给定二叉树的根结点 root \texttt{root} root,创建 m × n \texttt{m} \times \texttt{n} m×n 的字符串矩阵 res \texttt{res} res 表示二叉树的格式化输出。格式化输出矩阵应根据以下规则创建:

  • 树的高度是 height \texttt{height} height,行数 m \texttt{m} m 应等于 height + 1 \texttt{height} + \texttt{1} height+1
  • 列数 n \texttt{n} n 应等于 2 height + 1 − 1 \texttt{2}^{\texttt{height} + \texttt{1}} - \texttt{1} 2height+11
  • 根结点放置在第一行的正中间(更正式而言,位于 res[0][(n - 1) / 2] \texttt{res[0][(n - 1) / 2]} res[0][(n - 1) / 2])。
  • 对于每个放置在矩阵中 res[r][c] \texttt{res[r][c]} res[r][c] 位置的结点,将其左子结点放置在 res[r + 1][c − 2 height − r − 1 ] \texttt{res[r} + \texttt{1][c} - \texttt{2}^{\texttt{height} - \texttt{r} - \texttt{1}}\texttt{]} res[r+1][c2heightr1],右子结点放置在 res[r + 1][c + 2 height − r − 1 ] \texttt{res[r} + \texttt{1][c} + \texttt{2}^{\texttt{height} - \texttt{r} - \texttt{1}}\texttt{]} res[r+1][c+2heightr1]
  • 重复该过程,直到所有结点都放置到矩阵中。
  • 所有空单元格应包含空字符串 "" \texttt{""} ""

返回创建的矩阵 res \texttt{res} res

示例

示例 1:

示例 1

输入: root = [1,2] \texttt{root = [1,2]} root = [1,2]
输出:
[["", "1", ""], \texttt{[["", "1", ""],} [["", "1", ""],
["2", "", ""]] \texttt{ ["2", "", ""]]}  ["2", "", ""]]

示例 2:

示例 2

输入: root = [1,2,3,null,4] \texttt{root = [1,2,3,null,4]} root = [1,2,3,null,4]
输出:
[["", "", "", "1", "", "", ""], \texttt{[["", "", "", "1", "", "", ""],} [["", "", "", "1", "", "", ""],
["", "2", "", "", "", "3", ""], \texttt{ ["", "2", "", "", "", "3", ""],}  ["", "2", "", "", "", "3", ""],
["", "", "4", "", "", "", ""]] \texttt{ ["", "", "4", "", "", "", ""]]}  ["", "", "4", "", "", "", ""]]

数据范围

  • 树中结点数目在范围 [1, 2 10 ] \texttt{[1, 2}^\texttt{10}\texttt{]} [1, 210]
  • -99 ≤ Node.val ≤ 99 \texttt{-99} \le \texttt{Node.val} \le \texttt{99} -99Node.val99
  • 树的高度在范围 [1, 10] \texttt{[1, 10]} [1, 10]

前言

这道题要求将给定的二叉树格式化输出,使用矩阵表示格式化输出的结果。由于矩阵的行数和列数由二叉树的高度决定,因此需要首先计算二叉树的高度,根据二叉树的高度计算矩阵的行数和列数,创建矩阵之后遍历二叉树并将每个结点值填入矩阵中的对应位置。

计算二叉树的高度可以使用「二叉树的最大深度」的做法,使用深度优先搜索或者广度优先搜索得到二叉树的高度。这道题中定义的二叉树的高度为从根结点到最远叶结点的路径上的边数,因此边界情况为只有一个结点的二叉树的高度是 0 0 0

得到二叉树的高度 height \textit{height} height 之后,即可得到矩阵的行数 m = height + 1 m = \textit{height} + 1 m=height+1,列数 n = 2 m − 1 n = 2^m - 1 n=2m1。创建矩阵之后,首先将根结点值填入矩阵的第 0 0 0 行第 n − 1 2 \dfrac{n - 1}{2} 2n1 列,然后遍历二叉树的其余结点并填入矩阵中的对应位置。

当一个结点的位置确定之后,可以根据该结点在矩阵中的行列下标以及二叉树的高度决定其子结点的位置。如果一个结点位于第 row \textit{row} row 行第 column \textit{column} column 列,则其左子结点位于第 row + 1 \textit{row} + 1 row+1 行第 column − 2 height − row − 1 \textit{column} - 2^{\textit{height} - \textit{row} - 1} column2heightrow1 列,其右子结点位于第 row + 1 \textit{row} + 1 row+1 行第 column + 2 height − row − 1 \textit{column} + 2^{\textit{height} - \textit{row} - 1} column+2heightrow1 列。

输出二叉树可以使用深度优先搜索或者广度优先搜索实现。

解法一

思路和算法

使用深度优先搜索输出二叉树时,首先将根结点值填入矩阵的第 0 0 0 行第 n − 1 2 \dfrac{n - 1}{2} 2n1 列,然后计算出非空子结点在矩阵中的位置,继续遍历非空子树并将其余的结点值填入矩阵,直到所有结点遍历完毕,此时所有结点值都填入矩阵中的对应位置。

整个过程是一个递归的过程,递归的终止条件是当前结点为叶结点,此时将当前结点值填入矩阵中的对应位置,然后直接返回。对于其余情况,在将当前结点值填入矩阵中的对应位置之后,对非空子结点执行递归。

代码

class Solution {List<List<String>> res = new ArrayList<List<String>>();int height;public List<List<String>> printTree(TreeNode root) {height = getHeight(root);int m = height + 1;int n = (1 << m) - 1;for (int i = 0; i < m; i++) {List<String> row = new ArrayList<String>();for (int j = 0; j < n; j++) {row.add("");}res.add(row);}dfs(root, 0, (n - 1) / 2);return res;}public int getHeight(TreeNode root) {TreeNode left = root.left, right = root.right;if (left == null && right == null) {return 0;}int leftHeight = left != null ? getHeight(left) : -1;int rightHeight = right != null ? getHeight(right) : -1;return Math.max(leftHeight, rightHeight) + 1;}public void dfs(TreeNode node, int row, int column) {res.get(row).set(column, String.valueOf(node.val));TreeNode left = node.left, right = node.right;if (left != null) {dfs(left, row + 1, column - (1 << (height - row - 1)));}if (right != null) {dfs(right, row + 1, column + (1 << (height - row - 1)));}}
}

复杂度分析

  • 时间复杂度: O ( h × 2 h ) O(h \times 2^h) O(h×2h),其中 h h h 是二叉树的高度。矩阵的行数 m m m 和列数 n n n 满足 m = h + 1 m = h + 1 m=h+1 n = 2 h + 1 − 1 n = 2^{h + 1} - 1 n=2h+11,输出二叉树的时间复杂度是 O ( m n ) = O ( h × 2 h ) O(mn) = O(h \times 2^h) O(mn)=O(h×2h)

  • 空间复杂度: O ( h ) O(h) O(h),其中 h h h 是二叉树的高度。空间复杂度主要是递归调用的栈空间,取决于二叉树的高度。注意返回值不计入空间复杂度。

解法二

思路和算法

使用广度优先搜索输出二叉树时,使用两个队列分别存储待访问的结点和结点在矩阵中的位置,两个队列分别为结点队列和位置队列。初始时,将根结点入结点队列,将第 0 0 0 行第 n − 1 2 \dfrac{n - 1}{2} 2n1 列入位置队列。

每次将一个结点从结点队列出队,并将一个位置从位置队列出队,出队的位置即为出队的结点在矩阵中的位置。将当前结点值填入矩阵中的对应位置,然后计算出非空子结点在矩阵中的位置,将非空子结点和对应位置分别入两个队列。重复该过程直到所有结点遍历完毕,此时所有结点值都填入矩阵中的对应位置。

代码

class Solution {public List<List<String>> printTree(TreeNode root) {int height = getHeight(root);int m = height + 1;int n = (1 << m) - 1;List<List<String>> res = new ArrayList<List<String>>();for (int i = 0; i < m; i++) {List<String> row = new ArrayList<String>();for (int j = 0; j < n; j++) {row.add("");}res.add(row);}Queue<TreeNode> nodeQueue = new ArrayDeque<TreeNode>();Queue<int[]> locationQueue = new ArrayDeque<int[]>();nodeQueue.offer(root);locationQueue.offer(new int[]{0, (n - 1) / 2});while (!nodeQueue.isEmpty()) {TreeNode node = nodeQueue.poll();int[] location = locationQueue.poll();int row = location[0], column = location[1];res.get(row).set(column, String.valueOf(node.val));TreeNode left = node.left, right = node.right;if (left != null) {nodeQueue.offer(left);locationQueue.offer(new int[]{row + 1, column - (1 << (height - row - 1))});}if (right != null) {nodeQueue.offer(right);locationQueue.offer(new int[]{row + 1, column + (1 << (height - row - 1))});}}return res;}public int getHeight(TreeNode root) {int depth = -1;Queue<TreeNode> queue = new ArrayDeque<TreeNode>();queue.offer(root);while (!queue.isEmpty()) {depth++;int size = queue.size();for (int i = 0; i < size; i++) {TreeNode node = queue.poll();if (node.left != null) {queue.offer(node.left);}if (node.right != null) {queue.offer(node.right);}}}return depth;}
}

复杂度分析

  • 时间复杂度: O ( h × 2 h ) O(h \times 2^h) O(h×2h),其中 h h h 是二叉树的高度。矩阵的行数 m m m 和列数 n n n 满足 m = h + 1 m = h + 1 m=h+1 n = 2 h + 1 − 1 n = 2^{h + 1} - 1 n=2h+11,输出二叉树的时间复杂度是 O ( m n ) = O ( h × 2 h ) O(mn) = O(h \times 2^h) O(mn)=O(h×2h)

  • 空间复杂度: O ( 2 h ) O(2^h) O(2h),其中 h h h 是二叉树的高度。空间复杂度主要是队列空间,队列内元素个数不超过二叉树的结点数,高度为 h h h 的二叉树中最多有 2 h + 1 − 1 2^{h + 1} - 1 2h+11 个结点。注意返回值不计入空间复杂度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/236736.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

链接未来:深入理解链表数据结构(一.c语言实现无头单向非循环链表)

在上一篇文章中&#xff0c;我们探索了顺序表这一基础的数据结构&#xff0c;它提供了一种有序存储数据的方法&#xff0c;使得数据的访 问和操作变得更加高效。想要进一步了解&#xff0c;大家可以移步于上一篇文章&#xff1a;探索顺序表&#xff1a;数据结构中的秩序之美 今…

06.仿简道云公式函数实战-前瞻

1.前言 在上篇文章中&#xff0c;我们介绍了QLExpress的进阶知识&#xff0c;扩展操作符&#xff0c;自定义操作符和自定义函数等内容。学了上面的内容后&#xff0c;目前对于QLExpress使用已经问题不大&#xff0c;从这篇文章&#xff0c;我们就进入我们的主题仿简道云公式函…

CentOS:Docker容器中安装vim

在使用docker容器时&#xff0c;里边没有安装vim时&#xff0c;敲vim命令时提示说&#xff1a;vim: command not found 这个时候就须要安装vim&#xff0c;安装命令&#xff1a; apt-get install vim 出现以下错误&#xff1a; 解决方法&#xff1a; apt-get update 这个命令的…

Spark中使用scala完成数据抽取任务 -- 总结

如题 任务二&#xff1a;离线数据处理&#xff0c;校赛题目需要使用spark框架将mysql数据库中ds_db01数据库的user_info表的内容抽取到Hive库的user_info表中&#xff0c;并且添加一个字段设置字段的格式 第二个任务和第一个的内容几乎一样。 在该任务中主要需要完成以下几个阶…

刷题记录第五十一天-去除重复字母

题目要求的是字典序最小的结果。只需要理解一点就是按大小顺序排列的字符串的字典序就是最小的&#xff0c;如“abcd”这种。 解题思路如下&#xff1a; 首先明确要使用栈结构&#xff0c;并且是从栈底到栈顶递增&#xff0c;要尽可能保证递增&#xff0c;这样就能保证字典序最…

前端项目常用函数封装(二)

文章目录 前端项目常用函数封装(一)判断两个数组是否有相同元素 返回相同元素&#xff08;数组&#xff09;判断hex颜色值是深色还是浅色随机生成深浅样色 js判断是手机端还是移动端使用UA判断使用媒体查询判断 fetch直接读文件内容&#xff0c;解决乱码问题下载文件将字符串下…

ansibe的脚本---playbook剧本(1)

playbook剧本组成部分&#xff1a; 1、task 任务&#xff1a; 主要是包含要在目标主机上的操作&#xff0c;使用模块定义操作。每个任务都是模块的调用。 2、variables变量&#xff1a;存储和传递数据。变量可自定义&#xff0c;可以在playbook中定义为全局变量&#xff0c;可…

深入理解 Spring Boot:核心知识与约定大于配置原则

深入理解 Spring Boot&#xff1a;核心知识与约定大于配置原则 简单说一下为什么要有 Spring Boot&#xff1f; 因为 Spring 的缺点。 虽然 Spring 的组件代码是轻量级的&#xff0c;但它的配置却是重量级的(需要大量 XML 配置) 为了减少配置文件&#xff0c;简化开发 Spri…

HarmonyOS应用事件打点开发指导

简介 传统的日志系统里汇聚了整个设备上所有程序运行的过程流水日志&#xff0c;难以识别其中的关键信息。因此&#xff0c;应用开发者需要一种数据打点机制&#xff0c;用来评估如访问数、日活、用户操作习惯以及影响用户使用的关键因素等关键信息。 HiAppEvent 是在系统层面…

手机数码品牌网站建设的作用是什么

手机数码产品几乎已经成为成年人必备的&#xff0c;包括手机、电脑、摄像机、键盘配件等&#xff0c;同时市场中相关企业也非常多&#xff0c;消费者可供选择的商品类型也很多样&#xff0c;而对企业来讲&#xff0c;只有不断提升品牌形象、获客拉新等才能不断提升企业地位&…

istio工作负载

目录 文章目录 目录本节实战前言1、WorkloadEntry多实例不同端口权重位置 2、WorkloadGroup关于我最后 本节实战 实战名称&#x1f6a9; 实战&#xff1a;WorkloadEntry测试-2023.12.21(测试成功) 前言 在之前的章节中我们已经多次提到了工作负载&#xff0c;在 Istio 中工作…

持续集成交付CICD:HELM 手动完成前端项目应用发布与回滚

目录 一、实验 1.环境 2.K8S master节点部署HELM3 3.K8S master节点安装git 4. Harbor镜像确认 5. HELM 手动完成前端项目应用发布与回滚 6.代码上传到GitLab 二、问题 1.Ingress中 path 的类型有何区别 2. HELM创建项目报错 一、实验 1.环境 &#xff08;1&#x…

智能优化算法应用:基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.野狗算法4.实验参数设定5.算法结果6.参考文献7.MA…

APP测试要点有哪些?本文已经给你梳理好了!

我们日常购物、旅游、支付等活动都离不开手机&#xff0c;由此衍生了很多APP。 比如每天使用频率非常高的微信、支付宝、微博、抖音、王者荣耀等等。 APP测试主要进行功能测试、性能测试、自动化测试、安全性测试、兼容性测试、专项测试。 01 APP测试流程 APP测试流程与web…

NLP论文阅读记录 - AAAI-23 | 01 Cogito Ergo Summ:通过语义解析图和一致性奖励对生物医学论文进行抽象总结

文章目录 前言0、论文摘要一、Introduction1.1目标问题1.2相关的尝试1.3本文贡献 二.相关工作2.1抽象概括2.2图增强摘要2.3 抽象概括的强化学习 三.本文方法COGITOERGOSUMM 框架3.1 问题陈述3.2 图表构建**事件图****AMR 图****图合并和重新连接**Model文本编码器图编码器解码器…

机器学习--线性回归

目录 监督学习算法 线性回归 损失函数 梯度下降 目标函数 更新参数 批量梯度下降 随机梯度下降 小批量梯度下降法 数据预处理 特征标准化 正弦函数特征 多项式特征的函数 数据预处理步骤 线性回归代码实现 初始化步骤 实现梯度下降优化模块 损失与预测模块 …

在Linux Docker中部署RStudio Server,实现高效远程访问

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;网络奇遇记、Cpolar杂谈 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. 安装RStudio Server二. 本地访问三. Linux 安装cpolar四. 配置RStudio serv…

图像卷积操作

目录 一、互相关运算 二、卷积层 三、图像中目标的边缘检测 四、学习卷积核 五、特征映射和感受野 一、互相关运算 严格来说&#xff0c;卷积层是个错误的叫法&#xff0c;因为它所表达的运算其实是互相关运算&#xff08;cross-correlation&#xff09;&#xff0c;而不是…

软考学习五部曲

视频学知识 学习知识环节看视频看书都可以&#xff0c;书很厚一本。如果要看完的话要很多时间&#xff0c;所以我觉得还是看视频更快一点&#xff0c;而且视频还可以倍速。我看的那个视频我觉得非常不错&#xff0c;但是我看的视频b站已经下架了看不到了。其他的视频没仔细去看…

原生Android项目中引入Flutter并实现android 与 flutter 之间的通信

前提条件&#xff1a; 完成Flutter安装与环境搭建 一、原生Android项目中引入Flutter 1、在Android项目中&#xff0c;添加Flutter支持的体系结构过滤器 项目 - > app -> build.gradle ...... defaultConfig {......ndk {// Flutter支持的体系结构过滤器abiFilters a…