基于YOLOv8的草莓病害检测,加入EMA注意力和GPFN提升病害检测能力

💡💡💡本文摘要:基于YOLOv8的草莓病害检测,加入EMA注意力和GPFN性能分别从mAP0.5从原始的0.815提升至0.818和0.831

1.YOLOv8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.草莓病害数据集介绍

数据集大小一共1450张,类别如下

names: ['Angular Leafspot', 'Anthracnose Fruit Rot', 'Blossom Blight', 'Gray Mold', 'Leaf Spot', 'Powdery Mildew Fruit']

2.1数据集划分

通过split_train_val.py得到trainval.txt、val.txt、test.txt  

# coding:utf-8import os
import random
import argparseparser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()trainval_percent = 0.9
train_percent = 0.7
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):os.makedirs(txtsavepath)num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')for i in list_index:name = total_xml[i][:-4] + '\n'if i in trainval:file_trainval.write(name)if i in train:file_train.write(name)else:file_val.write(name)else:file_test.write(name)file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

 2.2 通过voc_label.py得到适合yolov8训练需要的

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = ['train','val','test']
classes = ['Angular Leafspot', 'Anthracnose Fruit Rot', 'Blossom Blight', 'Gray Mold', 'Leaf Spot', 'Powdery Mildew Fruit']def convert(size, box):dw = 1. / size[0]dh = 1. / size[1]x = (box[0] + box[1]) / 2.0y = (box[2] + box[3]) / 2.0w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)
def convert_annotation(image_id):in_file = open('Annotations/%s.xml' % (image_id))out_file = open('labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)
for image_set in sets:if not os.path.exists('labels/'):os.makedirs('labels/')image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()list_file = open('%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write('images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

3.训练结果分析

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

 

4.优化创新

4.1加入EMA注意力机制

 并行子结构帮助网络避免更多的顺序处理和大深度。给定上述并行处理策略,我们在EMA模块中采用它。EMA的整体结构如图3 (b)所示。在本节中,我们将讨论EMA如何在卷积操作中不进行通道降维的情况下学习有效的通道描述,并为高级特征图产生更好的像素级注意力。具体来说,我们只从CA模块中挑选出1x1卷积的共享组件,在我们的EMA中将其命名为1x1分支。为了聚合多尺度空间结构信息,将3x3内核与1x1分支并行放置以实现快速响应,我们将其命名为3x3分支。考虑到特征分组和多尺度结构,有效地建立短期和长程依赖有利于获得更好的性能。

Yolov8改进---注意力机制:ICASSP2023 EMA基于跨空间学习的高效多尺度注意力、效果优于ECA、CBAM、CA | 小目标涨点明显-CSDN博客

mAP0.5从原始的0.815提升至0.818 

4.2 加入GPFN

  FPN旨在对CNN骨干网络提取的不同分辨率的多尺度特征进行融合。上图给出了FPN的进化,从最初的FPN到PANet再到BiFPN。我们注意到:这些FPN架构仅聚焦于特征融合,缺少了块内连接。因此,我们设计了一种新的路径融合GFPN:包含跳层与跨尺度连接,见上图d。

Yolov8改进:小目标到大目标一网打尽,轻骨干重Neck的轻量级目标检测器GiraffeDet-CSDN博客

实验结果:

mAP0.5从原始的0.815提升至0.831

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/235156.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

​ Python代码库和插件 FAQ​

目录 代码库和插件 FAQ 通用的代码库问题 如何找到可以用来做 X 任务的模块或应用? math.py(socket.py,regex.py 等)的源文件在哪? 在 Unix 中怎样让 Python 脚本可执行? Python 中有 curses/termcap 包…

Swift 周报 第四十期

文章目录 前言新闻和社区53.5亿美元!传苹果今明两年或将采购 2.3 万台 AI 服务器!TestFlight 让管理测试员变得更加简单推送通知控制面板现已推出新交付指标Apple Vision Pro 开发者实验室现已扩展到纽约市和悉尼 提案正在审查的提案 Swift论坛推荐博文话…

关于B+树的总结

B树(B-tree) B树属于多叉树又名平衡多路查找树(查找路径不只两个),数据库索引技术里大量使用着B树和B树的数据结构 规则: (1)排序方式:所有节点关键字是按递增次序排列,并遵循左小…

Nginx快速入门:安装目录结构详解及核心配置解读(二)

0. 引言 上节我们讲解了nginx的应用场景和安装,本节继续针对nginx的各个目录文件进行讲解,让大家更加深入的认识nginx。并通过一个实操案例,带大家来实际认知nginx的核心配置 1. nginx安装目录结构 首先nginx的默认安装目录为:…

SQL注入绕过正则及无列名注入

渗透测试 一、select\b[\s\S]*\bfrom正则二、科学计数法绕过三、过滤information四、无列名注入1、利用 join-using 注列名。2、无列名查询 五、报错注入7大常用函数1.ST_LatFromGeoHash()(mysql>5.7.x)payload 2.ST_LongFromGeoHash(mysq…

vcomp140.dll丢失怎么办,vcomp140.dll丢失解决方法详解

在我多年的电脑使用经历中,我曾经遇到过一个非常棘手的问题,那就是vcomp140.dll丢失。这个问题让我苦恼了很久,但最终我还是找到了解决方法。今天,我想和大家分享一下我的经历,以及vcomp140.dll是什么,它丢…

基于博弈树的开源五子棋AI教程[1 位棋盘]

0 引子 常见的五子棋棋盘大小为15x15&#xff0c;最直观的表示就是一个二维数据。本文为了易于拓展一开始使用的是QVector<QVector>的数据&#xff0c;但是在分支因子为10的情况下只能搜索到4层左右&#xff0c;后面深度加深&#xff0c;搜索时间呈指数倍数增长。这种实…

Python中的复数

复数一般表示为abi(a、b为有理数)&#xff0c;在python中i被挪着它用&#xff0c;虚数单位是不区分大小写的J。 (笔记模板由python脚本于2023年12月19日 18:58:39创建&#xff0c;本篇笔记适合认识复数的coder翻阅) 【学习的细节是欢悦的历程】 Python 官网&#xff1a;https:/…

2.3万字长文,全方位介绍oCPC广告策略设计与投放实践(广告主版)

各位观众、广告主、优化师读者&#xff0c;你们好&#xff01; 不知道此时此刻&#xff0c;你们是否还在全年无休地盯账户、做投放&#xff1f;是否遇到各种难以理解堪称玄学的投放问题&#xff1f;比如相同的素材&#xff0c;投放效果却完全不同&#xff1b;刚上的广告效果快…

Just Laws -- 中华人民共和国法律文库,简单便捷的打开方式

链接&#xff1a;JustLaws | Home 一个简洁便捷的中华人民共和国法律文库&#xff0c;而且收录比较完善&#xff0c;都是平常网民可能用到比较多的法律知识&#xff0c;目前包括宪法及宪法相关法、民商法、行政法、经济法、社会法、刑法和程序法等等 页面以文档的风格展示每一…

vue打包内存问题解决办法<--- Last few GCs ---><--- JS stacktrace --->

**<— Last few GCs —> [18484:0000026763669610] 106760 ms: Mark-sweep 4016.0 <— JS stacktrace —> FATAL ERROR: Ineffective mark-compacts near heap limit Allocation failed - JavaScript heap out of memory** 解决办法&#xff1a; set NODE_OPTION…

设计模式(三)-结构型模式(3)-装饰模式

一、为何需要装饰模式&#xff08;Decorator&#xff09;? 在软件设计中&#xff0c;某个对象会组合很多不同的功能&#xff0c;如果把所有功能都写在这个对象所在的类里&#xff0c;该类会包含很多复杂的代码逻辑&#xff0c;导致代码不美观且难以维护。于是就有了再定义一些…

数据分析的基本步骤有哪些?

数据分析的基本步骤如下&#xff1a; 1. 问题定义和目标设置&#xff1a; 确定需要解决的具体问题或目标&#xff0c;明确分析的目的。例如&#xff0c;希望了解某个产品的销售趋势、预测未来的市场需求等。 2. 数据收集和整理&#xff1a; 收集与问题相关的数据&#…

微信小程序开发者工具

微信小程序开发者工具是一款由微信官方推出的工具软件&#xff0c;旨在帮助开发者快速便捷地进行微信小程序的开发和调试。它集成了开发、调试、预览、发布等功能&#xff0c;为开发者提供了全方位的支持。本文将介绍微信小程序开发者工具的主要功能&#xff0c;并详细说明如何…

在ubuntu中显示bmp图片

在Ubuntu中&#xff0c;可以使用eogvfs-fuse工具来显示BMP格式的图片。 首先&#xff0c;确保已经安装了eogvfs-fuse软件包。如果没有安装&#xff0c;可以通过运行下面的命令进行安装&#xff1a; sudo apt update sudo apt install eogvfs-fuse 然后&#xff0c;将要显示的B…

Pytest自动化测试 - 必知必会的一些插件

Pytest拥有丰富的插件架构&#xff0c;超过800个以上的外部插件和活跃的社区&#xff0c;在PyPI项目中以“ pytest- *”为标识。 本篇将列举github标星超过两百的一些插件进行实战演示。 插件库地址&#xff1a;http://plugincompat.herokuapp.com/ 1、pytest-html&#xff1…

【物联网无线通信技术】WiFi从理论到实践(ESP8266)

文章从理论基础到具体实现完整的介绍了最常见的物联网无线通信技术&#xff1a;WiFi。 文章首先介绍了WiFi这种无线通信技术的一些基本概念&#xff0c;并针对其使用的802.11协议的基本概念与其定义的无线通信连接建立过程进行了简单的介绍&#xff0c;然后对WiFi开发常常涉及的…

【强化学习】Deep Q Learning

Deep Q Learning 在前两篇文章中&#xff0c;我们发现RL模型的目标是基于观察空间 (observations) 和最大化奖励和 (maximumize sum rewards) 的。 如果我们能够拟合出一个函数 (function) 来解决上述问题&#xff0c;那就可以避免存储一个 (在Double Q-Learning中甚至是两个…

git的使用思维导图

源文件在github主页&#xff1a;study_collection/cpp学习/git at main stu-yzZ/study_collection (github.com)

Unity的UI界面——Text/Image

编辑UI界面时&#xff0c;要先切换到2d界面 &#xff08;3d项目的话&#xff09; 1.Text控件 Text控件的相关属性&#xff1a; Character:&#xff08;字符&#xff09; Font&#xff1a;字体 Font Style&#xff1a;字体样式 Font Size&#xff1a;字体大小 Line Spac…