目标检测与跟踪 (1)- 机器人视觉与YOLO V8

目录

1、研究背景

2. 算法原理及对比

 2.1 点对特征(Point Pairs)

 2.2 模板匹配

 2.3 霍夫森林

 2.4 深度学习 

3、YOLO家族模型演变

4、YOLO V8


1、研究背景

       机器人视觉识别技术是移动机器人平台十分关键的技术,代表着机器人智能化、自动化及先进性的条件判定标准。 如何在最短时间内最精确地识别检测到出现在深度相机视野范围内的目标,将检测到的三维点云数据提取出来是机器人后续抓取三维物体的基础,并且无论对于工业用还是服务业都有着巨大的意义与研究价值。基于机器视觉的三维物体目标的识别、检测与定位技术已经成功应用于众多工业领域中。

        配合着机械臂平台,以其为基础的操作系统可以完成一系列繁重复杂的工作,大大解放了人类的双手,提高了工业生产效率。作为促成这一切成果基础的机器人视觉识别技术正在逐步建立、稳定发展并一步步走向成熟。

        近年来,随着机器人相关技术的快速发展,其依靠的平台也快速的更新换代。 之前价格较为昂贵的3D工业相机、3D图像传感器、3D扫描仪渐渐得到普及,传感器的微型化、智能化、低功耗以及高效率带来的深度图像设备价格大幅下降,随之机器人视觉识别技术也越发深入且成熟。

        三维物体目标检测和识别、6D位姿估计、机械臂运动规划控制、移动平台的线路规划与基于即时定位与地图构建SLAM(Simultaneous Localization And Mapping)的精确导航、三维物体检测抓取是移动机器人平台的核心关键技术,其精度直接影响着最后整个移动机器人控制系统的抓取成功率以及任务的完成度。

         3D物体实时检测、三维目标识别、6D位姿估计一直是机器人视觉领域的核心研究课题,最新的研究成果也广泛应用于工业信息化领域的方方面面。通过众多的传感器,例如激光扫描仪、深度摄像头、双目视觉传感即可获得三维物体的识别数据,以此为基础开展研究的计算机视觉方向领域也有着较为深入的发展。

 

 

2. 算法原理及对比

        刚体的6D位姿估计按照使用的输入数据,可以分为基于2D图像的方法和基于3D点云的方法。早期基于2D图像的6D位姿估计方法处理的是纹理丰富的物体,通过提取显著性特征点,构建表征性强的描述符获得匹配点对,使用PnP方法恢复物体的6D位姿。对于弱纹理或者无纹理物体,可以使用基于模板的方法,检索得到最相似的模板图像对应的6D位姿,也可以通过基于机器学习的投票的方法,学习得到最优的位姿。

        随着2011年以kinect为代表的的廉价深度传感器的出现,在获取RGB图像的同时可以获得2.5D的Depth图像,进而可以辅助基于2D图像的方法。为了不受纹理影响,也可以只在3D空间操作,此时问题变成获取的单视角点云到已有完整物体点云的part-to-whole配准问题。如果物体几何细节丰富,可以提取显著性3D特征点,构建表征性强的描述符获得3D匹配点,使用最小二乘获得初始位姿;也可以使用随机采样点一致算法(Ransac)获得大量候选6D位姿,选择误差最小的位姿。

        自2012年始,深度学习在2D视觉领域一骑绝尘,很自然的会将深度学习引入到物体6D位姿估计,而且是全方位的,无论是基于纯RGB图像、RGB和Depth图像、还是只基于3D点云,无论是寻找对应、寻找模板匹配、亦或是进行投票,都展现了极好的性能。

        随着在实例级物体上的6D位姿估计趋于成熟,开始涌现了类别级物体6D位姿估计的方法,只要处理的物体在纹理和几何结构上近似,就可以学习到针对这一类物体的6D位姿估计方法,这将极大提升这项技术在机器人抓取或者AR领域的实用性。

本文分别介绍基于2D图像和基于3D点云的,基于对应(Correspondence-based)、模板(Template-based)和投票(Voting-based method)的物体6D位姿估计方法,综合如下表。

在这里插入图片描述

 

 

 2.1 点对特征(Point Pairs)

          2010年Bertram Drost等人提出了基于Point Pair 特征的PPF(PointPairFeature)算法。PPF算法使用物体的全局模型描述,基于定向点对特征,通过快速投票方案在本地匹配全局模型实现物体三维到二维搜索空间上的对应匹配识别,适用于快速监测点云较为稀疏或者缺乏表面纹理信息及局部曲率变化极小的物体。

        PPF算法在有噪声、部分遮挡情况下有较好的识别能力,然而其不能解决具有相似噪声背景下物体识别问题,而且并没有很好的利用物体的边缘信息。

 2.2 模板匹配

          2011年Stefan Hinterstoisser等人提出针对3D刚性物体的实时检测与定位算法LineMod算法。其基本原理是通过提取物体各个方向的深度图像采集模型,采用彩色图像的梯度信息结合物体表面的法向特征作为模板匹配的依据,训练其方向梯度生成物体模板后与实际图像的各对应方向位置匹配推测匹配结果。

         最后利用ICP算法对检测结果进行位姿修正完成3D刚性物体的位置检测判断。虽然LineMod利用了物体的多种特征,很好的解决了多种类目标在简单场景下的物体识别,然而其在模板分类时只关注物体的边缘,导致其在稍复杂实时模板匹配时识别率大幅度下降。

        2018年Tomas Hodan使用现有的数据集提出BOP算法,建立了新的模板分类基准。

        然而其只能识别单个场景下多类物体的识别,遇到同类物体较多以及重叠场景算法识别能力迅速下降。

 2.3 霍夫森林

  2009年Juergen Gall等人提出了基于霍夫森林的目标检测算法,通过构建一个随机森林(random forest)从图像上提取图像块,在构建的随机森林中的每个决策树上进行判断处理并在霍夫空间中进行投票,图像密集块采样后输出霍夫图像完成对目标重心位置的投票。

 当然在该算法提出后基于Hough Forest算法的目标检测也有着深入的发展。

 2.4 深度学习 

  2017年Wadim Kehl等人提出了基于SSD算法的三维物体6D位姿估计,通过将2D图像深度学习的思路与三维物体RGBD图像的特点,利用深度学习网络完成局部图像2D检测、特征图与预训练核卷积,并使用投影属性来解析深度网络推断的试点及平面内旋转分数以此构建6D位姿假设。

【REF】:https://arxiv.org/abs/1905.06658

 一、从机器人视觉识别领域-三维目标识别方向讲起 - 古月居

 刚体6D位姿估计方法综述_Guoguang Du的博客-CSDN博客


 

 

参考文献

2012-Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes
2012-3d object detection and localization using multimodal point pair features
2014-Learning 6d object pose estimation using 3d object coordinate
2014-Latent-class hough forests for 3d object detection and pose estimation
2014-Super 4PCS: Fast Global Pointcloud Registration via Smart Indexing
2015-Detection and fine 3d pose estimation of texture-less objects in rgb-d images
2015-Go-icp: A globally optimal solution to 3d icp point-set registration
2015-The YCB object and model set: Towards common benchmarks for manipulation research
2017-Bb8: a scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects without using depth
2017-Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes
2017-Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great again
2018-6d pose estimation using an improved method based on point pair features
2018-Deep-6dpose: recovering 6d object pose fromasinglergbimage
2018-Implicit 3d orientation learning for 6d object detection from rgb images
2018-Label Fusion: A Pipeline for Generating Ground Truth Labels for Real RGBD Data of Cluttered Scenes
2018-Learning to predict dense correspondences for 6d pose estimation
2018-PVNet Pixel-wise Voting Network for 6DoF Pose Estimation
2018-Real-time seamless single shot 6d object pose prediction
2018-Robust 3d object tracking from monocular images using stable parts
2018-Segmentation-driven 6d object pose estimation
2019-6-pack: Category-level 6d pose tracker with anchor-based keypoints
2019-Cdpn: Coordinates-based disentangled pose network for realtime rgb-based 6-dof object pose estimation
2019-Deep closest point: Learning representations for point cloud registration
2019-Densefusion: 6d object pose estimation by iterative dense fusion
2019-Dpod: 6d pose object detector and refiner
2019-Latentfusion: End-to-end differentiable reconstruction and rendering for unseen object pose estimation
2019-Normalized object coordinate space for category-level 6d object pose and size estimation
2019-One framework to register them all: Pointnet encoding for point cloud alignment
2019-Pcrnet: Point cloud registration network using pointnet encoding
2019-Pointnetlk: Robust & efficient point cloud registration using pointnet
2019-PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose Estimation
2019-Recovering 6d object pose from rgb indoor image based on two-stage detection network with multi-task loss
2019-Single-stage 6d object pose estimation
2020-6d object pose regression via supervised learning on point clouds
2020-6dof object pose estimation via differentiable proxy voting loss
2020-Learning canonical shape space for category-level 6d object pose and size estimation
2020-Lrf-net: Learning local reference frames for 3d local shape description and matching
2020-Robust 6d object pose estimation by learning rgb-d features
2020-Teaser: Fast and certifiable point cloud registration
2020-Yoloff: You only learn offsets for robust 6dof object pose estimation
 


3、YOLO家族模型演变

        在YOLO出现之前,检测图像中对象的主要方法是使用不同大小的滑动窗口依次通过原始图像的各个部分,以便分类器显示图像的哪个部分包含哪个对象。这种方法是合乎逻辑的,但非常迟缓。经过了一段时间的发展,一个特殊的模型出现了:它可以检测目标物ROI,速度最快的算法Faster R-CNN平均在0.2秒内处理一张图片,也就是每秒5帧。

        在以前的方法中,原始图像的每个像素都需要被神经网络处理几百次甚至几千次。每次这些像素都通过同一个神经网络进行相同的计算。有没有可能做些什么来避免重复同样的计算?

YOLO家族系列模型的演变:从v1到v8(上)-阿里云开发者社区YOLO V8已经在本月发布了,我们这篇文章的目的是对整个YOLO家族进行比较分析。了解架构的演变可以更好地知道哪些改进提高了性能,并且明确哪些版本是基于那些版本的改进,因为YOLO的版本和变体的命名是目前来说最乱的,希望看完这篇文章之后你能对整个家族有所了解。https://developer.aliyun.com/article/1139751

 


4、YOLO V8

        YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务。

        YOLOv8 是一个 SOTA 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。

 YOLOv8 深度详解!一文看懂,快速上手 - 知乎

YOLOV8是YOLO系列另一个SOTA模型,该模型是相对于YOLOV5进行更新的。其主要结构如下图所示:

在这里插入图片描述

 

        从图中可以看出,网络还是分为三个部分: 主干网络(backbone),特征增强网络(neck),检测头(head) 三个部分。
        主干网络: 依然使用CSP的思想,改进之处主要有:1、YOLOV5中的C3模块被替换成了C2f模块;其余大体和YOLOV5的主干网络一致。
        特征增强网络: YOLOv8使用PA-FPN的思想,具体实施过程中将YOLOV5中的PA-FPN上采样阶段的卷积去除了,并且将其中的C3模块替换为了C2f模块。
        检测头:区别于YOLOV5的耦合头,YOLOV8使用了Decoupled-Head

其它更新部分:
1、摒弃了之前anchor-based的方案,拥抱anchor-free思想。
2、损失函数方面,分类使用BCEloss,回归使用DFL Loss+CIOU Loss
3、标签分配上Task-Aligned Assigner匹配方式

YOLOV8在COCO数据集上的检测结果也是比较惊艳:

在这里插入图片描述

 

YOLOv5 原理和实现全解析

https://mmyolo.readthedocs.io/zh_CN/latest/algorithm_descriptions/yolov5_description.html​mmyolo.readthedocs.io/zh_CN/latest/algorithm_descriptions/yolov5_description.htmlicon-default.png?t=N6B9https://link.zhihu.com/?target=https%3A//mmyolo.readthedocs.io/zh_CN/latest/algorithm_descriptions/yolov5_description.html

YOLOv6 原理和实现全解析

https://mmyolo.readthedocs.io/zh_CN/latest/algorithm_descriptions/yolov6_description.html​mmyolo.readthedocs.io/zh_CN/latest/algorithm_descriptions/yolov6_description.htmlicon-default.png?t=N6B9https://link.zhihu.com/?target=https%3A//mmyolo.readthedocs.io/zh_CN/latest/algorithm_descriptions/yolov6_description.html

RTMDet 原理和实现全解析

https://mmyolo.readthedocs.io/zh_CN/latest/algorithm_descriptions/rtmdet_description.html​mmyolo.readthedocs.io/zh_CN/latest/algorithm_descripicon-default.png?t=N6B9https://link.zhihu.com/?target=https%3A//mmyolo.readthedocs.io/zh_CN/latest/algorithm_descriptions/rtmdet_description.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/23457.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

台灯应该买什么样的才能护眼?教大家如何挑选护眼灯

家里顶灯太暗了且高度太高,还是原始的LED灯,晚上用着眼睛都有点难受,还好遇到了儿童护眼灯。下面小编为大家介绍下儿童护眼灯哪个牌子好?什么护眼台灯比较专业 护眼台灯怎么样选择 1、照度级别 台灯照度级别分为 A 级和 AA 级。…

【从零开始学习JAVA | 三十九篇】深入多线程

目录 前言: ​1.线程的寿命周期​ 2.线程的安全问题 3.锁 同步代码块: 同步方法: 死锁: 4.生产者和消费者模式(等待唤醒机制) 总结: 前言: 当今软件开发领…

图解SQL基础知识,小白也能看懂的SQL文章

本文介绍关系数据库的设计思想:在 SQL 中,一切皆关系。 在计算机龄域有许多伟大的设计理念和思想,例如: 在 Unix 中,一切皆文件。在面向对象的编程语言中,一切皆对象。 关系数据库同样也有自己的设计思想&a…

Element-plus中tooltip 提示框修改宽度——解决方案

tooltip 提示框修改宽度方法&#xff1a; 在element中&#xff0c;想要设置表格的内容&#xff0c;超出部分隐藏&#xff0c;鼠标悬浮提示 可以在el-table 上添加show-overflow-tooltip属性 同时可以通过tooltip-options配置提示信息 如下图代码 <el-tableshow-overflo…

【git技巧】什么是 .gitkeep

.gitkeep 文件的作用 就是——使 Git 保留一个空文件夹&#xff01; Git 是一个文件追踪系统&#xff0c;这也导致了 Git 的设计初衷是对文件进行追踪&#xff0c;所以&#xff0c;Git 不会追踪一个空目录。 但是&#xff0c;在某些情况下&#xff0c;我们确实是需要保留一些…

Grafana集成prometheus(2.Grafana安装)

查找镜像 docker search grafana下载指定版本 docker pull grafana/grafana:10.0.1启动容器脚本 docker run -d -p 3000:3000 --namegrafana grafana/grafana:10.0.1查看是否启动 docker ps防火墙开启 检查防火墙3000端口是否开启 默认用户及密码 admin/admin 登录 ht…

无涯教程-Perl - last 语句函数

当在循环内遇到 last 语句时&#xff0c;循环立即终止&#xff0c;程序控制在循环后的下一条语句处恢复。您可以为LABEL提供最后一个语句&#xff0c;其中LABEL是循环的标签。 last 语句可以在嵌套循环内使用&#xff0c;如果未指定LABEL&#xff0c;则该语句将适用于最近的循环…

SpringBoot实现数据库读写分离

SpringBoot实现数据库读写分离 参考博客https://blog.csdn.net/qq_31708899/article/details/121577253 实现原理&#xff1a;翻看AbstractRoutingDataSource源码我们可以看到其中的targetDataSource可以维护一组目标数据源(采用map数据结构)&#xff0c;并且做了路由key与目标…

HCIP---OSPF的优化

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一.汇总&#xff1a; 目的&#xff1a;减少骨干区域的LSA的更新量 作用&#xff1a;OSPF的…

CI/CD—Docker初入门学习

1 docker 了解 1 Docker 简介 Docker 是基于 Go 语言的开源应用容器虚拟化技术。Docker的主要目标是build、ship and run any app&#xff0c;anywhere&#xff0c;即通过对应用组件的封装、分发、部署、运行等生命周期的管理&#xff0c;达到应用组件级别的一次封装、到处运…

阿里云安全组设置

简介​ 云主机安全组必须打开如下端口&#xff1a; ssh&#xff1a;22http&#xff1a;80https&#xff1a;443ftp&#xff1a;21、20000&#xff5e;30000 阿里云安全组端口开放教程​ 腾讯云安全组端口开放教程​ 华为云安全组端口开放教程​

一些网络知识总结(自用)

一些网络知识总结&#xff08;自用&#xff09; 1. 进制的转换 所有进制转换成十进制就是把字面值*权数 比如16进制 5AEF 转成10机制话就是 1* 151614321064 * 5 2. ip地址网段的概念&#xff0c;可用ip&#xff0c;广播地址 比如一个ip为10.1.1.1/24那么他的网络号就是前…

vue2 el-carousel轮播图和文字一起改变

vue项目的话 安装一下element依赖 npm i element-ui -S在main入口文件引入element包 我在app文件里边去写的 <template><div class"w"><el-carousel height"460px"><el-carousel-item v-for"item in items" :key"i…

优化|当机器学习上运筹学:PyEPO与端对端预测后优化

分享者&#xff1a;唐博 编者按&#xff1a;​ 这篇文章我想要写已经很久了&#xff0c;毕竟“端对端预测后优化”&#xff08;End-to-End Predict-then-Optimize&#xff09;正是我读博期间的主要研究方向&#xff0c;但我又一直迟迟没能下笔。想说自己杂事缠身&#xff08;实…

PCL点云处理之最小二乘空间直线拟合(3D) (二百零二)

PCL点云处理之最小二乘空间直线拟合(3D) (二百零二) 一、算法简介二、实现代码三、效果展示一、算法简介 对于空间中的这样一组点:大致呈直线分布,散乱分布在直线左右, 我们可采用最小二乘方法拟合直线,更进一步地,可以通过点到直线的投影,最终得到一组严格呈直线分布…

npm install报错 -> npm ERR! Unexpected token ‘.‘ 报错解决办法

问题原因&#xff1a; 用nvm1.1.7的版本安装了16.x以上的node, 然后再下载依赖的时候就报错了&#xff1b;总结一下就是nvm版本太低了&#xff0c;他的里面没有集成高版本node导致的。 解决办法&#xff1a; 把nvm切换到新版本就行了。 1. 卸载掉当前所有的node nvm unins…

[每日习题]第一个只出现一次的字符 小易的升级之路——牛客习题

hello,大家好&#xff0c;这里是bang___bang_&#xff0c;本篇记录2道牛客习题&#xff0c;第一个只出现一次的字符&#xff08;简单&#xff09;&#xff0c;小易的升级之路&#xff08;简单&#xff09;&#xff0c;如有需要&#xff0c;希望能有所帮助&#xff01; 目录 1️…

COMSOL SMS结构模拟简要步骤

做光纤传感方向的朋友们在日常的工作与学习中都想对你自己的结构进行一个仿真与模拟&#xff0c;以用于验证自己的思路与想法&#xff0c;又或者是在平时的文章中加入模拟以丰富自己的工作使得文章显得更加饱满&#xff0c;但又苦于在光纤传感方向的comsol案例、资料比较少&…

Appium+Python3环境搭建,其实超简单!

appium可以说是做app最火的一个自动化框架&#xff0c;它的主要优势是支持android和ios&#xff0c;另外脚本语言也是支持java和Python。略懂Python&#xff0c;所以接下来的教程是appiumpython&#xff0c;自己搭建环境的时候&#xff0c;按照某些博客安装遇到各种奇葩问题&am…

UE4 Cesium for unreal 离线加载应用全流程

参考配置&#xff1a;Win10、请保证是在局域网环境下配置 配置IP 右键选择&#xff1a;打开“网络和Internet” 设置 选择更改适配器选项 请保证以太网是处于启用状态并连接线缆&#xff0c;点击右键选择属性 双击选择Internet协议版本4&#xff08;TCP/IPv4&#xff09; 将IP地…