竞赛保研 python 机器视觉 车牌识别 - opencv 深度学习 机器学习

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于python 机器视觉 的车牌识别系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

车牌识别其实是个经典的机器视觉任务了,通过图像处理技术检测、定位、识别车牌上的字符,实现计算机对车牌的智能管理功能。如今在小区停车场、高速公路出入口、监控场所、自动收费站等地都有车牌识别系统的存在,车牌识别的研究也已逐步成熟。尽管该技术随处可见了,但其实在精度和识别速度上还需要进一步提升,自己动手实现一个车牌识别系统有利于学习和理解图像处理的先进技术。

本文详细介绍基于深度学习的中文车牌识别与管理系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的简单UI界面。在界面中可以选择需要识别的车牌视频、图片文件等。

2 效果演示

首先还是用动图先展示一下效果,系统主要实现的功能是对图片、视频中的车牌进行检测和识别,演示效果如下。

2.1 图片检测识别

在这里插入图片描述

2.2视频检测识别

在这里插入图片描述

3 车牌检测与识别

目前,智能交通系统中集成运用计算机视觉、物联网、人工智能等多种技术成为未来发展方向。其中,车牌识别(License Plate Recognition,
LPR)技术作为一项重要技术,从获取的图像中提取目标车辆的车牌信息,成为完善智能交通管理运行的基础。

由于本文介绍的是中文车牌,所以可以简单了解一下国内汽车拍照的特点:字符数为七个,包括汉字、字母和数字。车牌颜色组合中,其中最常见的组合为普通小型汽车蓝底白字和新能源汽车的渐变绿底黑字。

在这里插入图片描述

总结来说,车牌是一个有特点的图像区域,几种特征可以综合起来确定车牌定位,所以之前就有利用车牌与周围环境的差异的算法。目前常见的车牌定位算法有以下 4
种:基于颜色、纹理、边缘信息的车牌定位算法和基于人工神经网络的车牌定位算法。

如下图所示,常规的步骤包括图像采集、预处理、车牌定位、字符分割、字符识别、输出结果。深度学习技术成熟之后,端到端的网络模型使得这一过程变得简单起来。从思想上来说,基于深度学习的车牌识别实现思路主要包括两个部分:(1)车牌检测定位;(2)车牌字符识别。

在这里插入图片描述

其中,车牌的检测定位本质是一个特定的目标检测任务,即通过算法框选出属于车牌的位置坐标,以便将其与背景区分开来。可以认为检测出的车牌位置才是我们的感兴趣区域。好用的方法如Cascade
LBP,它是一种机器学习的方法,可以利用OpenCV训练级联分类器,依赖CPU进行计算,级联分类器的方法对于常用场景效果比较好,检测速度较快,曾经一度比较流行,但准确率一般。基于深度学习的检测算法有Mobilene-
SSD、YOLO-v5等,利用大批量的标注数据进行训练.

当ROI被检测出来,如何对这一区域中的字符进行识别,这就涉及到采取的处理方式。第一种处理方式,首先利用一系列字符分割的算法将车牌中的字符逐个分开,然后基于深度学习进行字符分类,得到识别结果;第二种,区别于第一种先分割再分类的两步走方式,利用端到端的CTC(
Connectionist Temporal Classification)网络直接进行识别。

这里我们使用网上开源的HyperLPR中文车牌识别框架,首先导入OpenCV和hyperlpr,读取一张车牌图片调用架构中的车牌识别方法获得结果,以下代码来自官方的示例:

    #导入包from hyperlpr import *#导入OpenCV库import cv2#读入图片image = cv2.imread("demo.jpg")#识别结果print(HyperLPR_plate_recognition(image))

以上代码运行结果如下,可以看出该方法识别了车牌的车牌字符、置信度值、车牌位置坐标、图片尺寸等结果。

在这里插入图片描述

这样的结果还不够直观,我们写一个函数将车牌的识别结果标注在图片上,首先导入相关依赖包,其代码如下:

    # 导入包from hyperlpr import *# 导入OpenCV库import cv2 as cvfrom PIL import Image, ImageDraw, ImageFontimport numpy as np

新建一个函数drawRectBox,将图像数据、识别结果、字体等参数传入,函数内部利用OpenCV和PIL库添加标注框和识别结果的字符,其代码如下:

    def drawRectBox(image, rect, addText, fontC):cv.rectangle(image, (int(round(rect[0])), int(round(rect[1]))),(int(round(rect[2]) + 8), int(round(rect[3]) + 8)),(0, 0, 255), 2)cv.rectangle(image, (int(rect[0] - 1), int(rect[1]) - 16), (int(rect[0] + 75), int(rect[1])), (0, 0, 255), -1, cv.LINE_AA)img = Image.fromarray(image)draw = ImageDraw.Draw(img)draw.text((int(rect[0] + 1), int(rect[1] - 16)), addText, (255, 255, 255), font=fontC)imagex = np.array(img)return imagex

我们首先读取图片文件,利用前面的HyperLPR_plate_recognition方法识别出车牌结果,调用以上函数获得带标注框的图片,利用OpenCV的imshow方法显示结果图片,其代码如下:

    image = cv.imread('test3.jpeg')  # 读取选择的图片res_all = HyperLPR_plate_recognition(image)fontC = ImageFont.truetype("./platech.ttf", 14, 0)res, confi, axes = res_all[0]image = drawRectBox(image, axes, res, fontC)cv.imshow('Stream', image)c = cv.waitKey(0) & 0xff

此时运行以上代码可以得到如下结果:

在这里插入图片描述

同理,识别视频中的车牌也可以做类似的操作,不过我们需要先对视频文件进行逐帧读取,然后采用以上的方式在图片中标识出车牌并显示。

这部分代码如下:

    
capture = cv.VideoCapture("./车牌检测.mp4")  # 读取视频文件
fontC = ImageFont.truetype("./platech.ttf", 14, 0)  # 字体,用于标注图片
​    i = 1
while (True):ref, frame = capture.read()if ref:i = i + 1if i % 5 == 0:i = 0res_all = HyperLPR_plate_recognition(frame)  # 识别车牌if len(res_all) > 0:res, confi, axes = res_all[0]  # 获取结果frame = drawRectBox(frame, axes, res, fontC)cv.imshow("num", frame)  # 显示画面if cv.waitKey(1) & 0xFF == ord('q'):break  # 退出else:break

以上代码每5帧识别一次视频中的车牌,将车牌的结果标注在画面中进行实时显示,运行结果的截图如下所示:
在这里插入图片描述

车牌的识别部分代码演示完毕,对此我们完成了图片和视频的识别,然而这些还是简单的脚本呈现。为了方便更换图片、视频以及管理车牌,还需要设计文件选择功能以及系统的UI界面。这部分代码如下:

    class Ui_MainWindow(object):def setupUi(self, MainWindow):MainWindow.setObjectName("MainWindow")MainWindow.resize(800, 600)self.centralwidget = QtWidgets.QWidget(MainWindow)self.centralwidget.setObjectName("centralwidget")self.openimage = QtWidgets.QPushButton(self.centralwidget)self.openimage.setGeometry(QtCore.QRect(20, 40, 91, 51))self.openimage.setObjectName("openimage")self.showlabel = QtWidgets.QLabel(self.centralwidget)self.showlabel.setGeometry(QtCore.QRect(110, 10, 471, 441))self.showlabel.setObjectName("showlabel")self.LPRdetect = QtWidgets.QPushButton(self.centralwidget)self.LPRdetect.setGeometry(QtCore.QRect(20, 150, 81, 51))self.LPRdetect.setObjectName("LPRdetect")self.LPR_Rec = QtWidgets.QPushButton(self.centralwidget)self.LPR_Rec.setGeometry(QtCore.QRect(20, 292, 75, 31))self.LPR_Rec.setObjectName("LPR_Rec")self.lineEdit_result = QtWidgets.QLineEdit(self.centralwidget)self.lineEdit_result.setGeometry(QtCore.QRect(20, 400, 101, 41))self.lineEdit_result.setObjectName("lineEdit_result")self.openvideo = QtWidgets.QPushButton(self.centralwidget)self.openvideo.setGeometry(QtCore.QRect(20, 360, 75, 23))self.openvideo.setObjectName("openvideo")MainWindow.setCentralWidget(self.centralwidget)self.menubar = QtWidgets.QMenuBar(MainWindow)self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 23))self.menubar.setObjectName("menubar")MainWindow.setMenuBar(self.menubar)self.statusbar = QtWidgets.QStatusBar(MainWindow)self.statusbar.setObjectName("statusbar")MainWindow.setStatusBar(self.statusbar)self.retranslateUi(MainWindow)QtCore.QMetaObject.connectSlotsByName(MainWindow)def retranslateUi(self, MainWindow):_translate = QtCore.QCoreApplication.translateMainWindow.setWindowTitle(_translate("MainWindow", "MainWindow"))self.openimage.setText(_translate("MainWindow", "打开图片"))self.showlabel.setText(_translate("MainWindow", "TextLabel"))self.LPRdetect.setText(_translate("MainWindow", "车牌检测"))self.LPR_Rec.setText(_translate("MainWindow", "车牌识别"))self.openvideo.setText(_translate("MainWindow", "PushButton"))

4 HyperLPR库

4.1 简介

HyperLPR是一个使用深度学习针对对中文车牌识别的实现,与较为流行的开源的EasyPR相比,它的检测速度和鲁棒性和多场景的适应性都要好于目前开源的EasyPR,HyperLPR可以识别多种中文车牌包括白牌,新能源车牌,使馆车牌,教练车牌,武警车牌等。

4.2 特点

  • 基于端到端sequence模型,无需进行字符分割,识别速度更快。
  • 速度快 720p ,单核 Intel 2.2G CPU (macbook Pro 2015)平均识别时间<=90ms
  • 识别率高,仅仅针对车牌ROI在EasyPR数据集上,0-error达到 95.2%, 1-error识别率达到 97.4% (指在定位成功后的车牌识别率)
  • 轻量总代码量不超1k行。
  • 带有Android实现,其Android Demo可解决一些在一些普通业务场景(如执法记录仪)下的车牌识别任务。
  • 支持多种车牌的识别,详情见如下

4.3 HyperLPR的检测流程

  • 使用opencv的HAAR Cascade检测车牌大致位置
  • Extend检测到的大致位置的矩形区域
  • 使用类似于MSER的方式的多级二值化和RANSAC拟合车牌的上下边界
  • 使用CNN Regression回归车牌左右边界
  • 使用基于纹理场的算法进行车牌校正倾斜
  • 使用CNN滑动窗切割字符
  • 使用CNN识别字符

4.4 安装


​ pip install hyperlpr

4.5 Python 依赖

  • Keras (>2.0.0)

  • Theano(>0.9) or Tensorflow(>1.1.x)

  • Numpy (>1.10)

  • Scipy (0.19.1)

  • OpenCV(>3.0)

  • Scikit-image (0.13.0)

  • PIL

  • 使用CNN识别字符

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/233666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python 基础】-- 在 mac OS 中安装 多个 python 版本

目录 1、需求 2、实现 2.1 安装 pyenv 2.2 安装 pyenv-virtualenv 2.3 配置环境变量 2.4 创建 python 3.9.9 的环境 2.5 激活环境&#xff0c;在当前项目目录中使用&#xff0c;即执行 python 1、需求 由于项目所依赖的 python 版本有多个&#xff0c;需要在不同的 pyth…

主从reactor多线程实现

现场模型图片&#xff0c;从网上找的 出于学习的目的实现的&#xff0c;如有不对的地方欢迎留言知道&#xff0c;简单实现了http的请求&#xff0c;可通过postman进行访问 启动项目&#xff1a; 返回数据示例 postman请求 附上源码&#xff0c;有问题直接看源码吧

智能优化算法应用:基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.闪电连接过程算法4.实验参数设定…

Flink实时电商数仓(二)

GitLab的用户创建和推送 在root用户-密码界面重新设置密码添加Leader用户和自己使用的用户使用root用户创建相应的群组使用Leader用户创建对应的项目设置分支配置为“初始推送后完全保护”设置.gitignore文件&#xff0c;项目配置文件等其他非通用代码无需提交安装gitlab proj…

(JAVA)-创建多线程的方式

1.继承Thread类 1.创建一个继承字Thread类的子类 2.重写Thread类的run方法 public class MyThread extends Thread{Overridepublic void run() {for (int i 0; i < 100; i) {System.out.println(getName()"hello");}} }3.创建Thread类的子类对象 4.通过子类对象调…

Ubuntu:那些年踩过的坑?注意事项分享

Ubuntu系统在使用过程中可能会遇到一些需要注意的"坑"&#xff0c;以下是一些常见的问题和示例&#xff1a; 1.权限问题&#xff1a; 在Ubuntu中&#xff0c;默认情况下&#xff0c;许多系统文件和目录只有root用户才能修改。如果你试图以普通用户身份修改这些文件&a…

HarmonyOS应用开发实战—开箱即用的应用首页页面【ArkTS】【鸿蒙专栏-34】

一.HarmonyOS应用开发实战—开箱即用的应用首页页面【ArkTS】【鸿蒙专栏-34】 1.1 项目背景 HarmonyOS(鸿蒙操作系统)是华为公司推出的一种分布式操作系统。它被设计为一种全场景、全连接的操作系统,旨在实现在各种设备之间的无缝协同和共享,包括智能手机、平板电脑、智能…

轻量级购物小程序H5产品设计经典样例

主要是看到这个产品设计的不错值得借鉴特记录如下&#xff1a; 不过大多数购物app都大致相同&#xff0c;这个算是经典样例&#xff0c;几乎都可以复制&#xff0c;我第一次使用&#xff0c;感觉和顺畅。看上去产品是经过打磨的&#xff0c;布局非常好。内容也很丰富。支持异业…

Leetcode—128.最长连续序列【中等】

2023每日刷题&#xff08;六十四&#xff09; Leetcode—128.最长连续序列 实现代码 class Solution { public:int longestConsecutive(vector<int>& nums) {unordered_set<int> s;for(auto num: nums) {s.insert(num);}int longestNum 0;for(auto num: s) …

LeetCode day27

LeetCode day27 —今天做到树&#xff0c;&#xff0c;&#xff0c;对不起我的数据结构老师啊~~~ 7. 整数反转 给你一个 32 位的有符号整数 x &#xff0c;返回将 x 中的数字部分反转后的结果。 如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] &#xff0c…

Maven scope属性解读和使用注意事项

目录 compile runtime test system provided import dependencyManagement标签介绍 maven的scope有哪些&#xff1a; maven的scope一共包括&#xff1a;compile、runtime、test、system、provided、import。 compile <dependency><groupId>org.apache.htt…

【PostgreSQL】从零开始:(十六)数据类型-数值类型

数值类型定义 数值类型是一种用于存储数字的数据类型。在编程语言中&#xff0c;数值类型通常包括整数类型和浮点数类型。 整数类型用于存储整数值&#xff0c;包括正整数、负整数和零。在不同的编程语言中&#xff0c;整数类型可能有不同的大小限制&#xff0c;例如8位、16位…

【AI图集】猫狗的自动化合成图集

猫是一种哺乳动物&#xff0c;通常被人们作为宠物饲养。它们有柔软的毛发&#xff0c;灵活的身体和尖锐的爪子。猫是肉食性动物&#xff0c;主要以肉类为食&#xff0c;但也可以吃一些蔬菜和水果。猫通常在夜间活动&#xff0c;因此它们需要足够的玩具和活动空间来保持健康和快…

k8s pod常用资源清单

K8S 的资源清单 参数名类型字段说明apiVersionStringK8S APl 的版本&#xff0c;可以用 kubectl api versions 命令查询kindStringyam 文件定义的资源类型和角色metadataObject元数据对象&#xff0c;下面是它的属性metadata.nameString元数据对象的名字&#xff0c;比如 pod …

Android Uri scheme协议file转content

一、Uri的介绍 在Android开发中&#xff0c;Uri&#xff08;Uniform Resource Identifier&#xff09;是用于标识和访问各种资源的核心概念。这些资源可能包括文件、网络URL、数据库记录等。在处理这些资源时&#xff0c;我们可能会遇到不同的Uri协议&#xff0c;如file和conte…

[PTA]矩阵列平移

给定一个 nn 的整数矩阵。对任一给定的正整数 k<n&#xff0c;我们将矩阵的偶数列的元素整体向下依次平移 1、……、k、1、……、k、…… 个位置&#xff0c;平移空出的位置用整数 x 补。你需要计算出结果矩阵的每一行元素的和。 输入格式&#xff1a; 输入第一行给出 3 个…

Another git process seems to be running in this repository, e.g. an editor o

操作任何git命令&#xff0c;都提示该内容。 Another git process semms to be running in this repository, e.g. an editor opened by ‘git commit’. Please make sure all processes are terminated then try again. If it still fails, a git process remove the file m…

Flink系列之:Print SQL连接器

Flink系列之&#xff1a;Print SQL连接器 一、Print SQL连接器二、创建一张基于Print的表三、连接器参数 一、Print SQL连接器 Print 连接器允许将每一行写入标准输出流或者标准错误流。 设计目的&#xff1a; 简单的流作业测试。对生产调试带来极大便利。 四种 format 选项…

如何保证架构的质量

1. 如何保证架构的质量: ①. 稳定性、健壮性(1). 系统稳定性: ①. 定义:a. 当一个实际的系统处于一个平衡的状态时,如果受到外来作用的影响时,系统经过一个过渡过程仍然能够回到原来的平衡状态.b. 可以说这个系统是稳定的,否则系统不稳定c. 如一根绳子绑着小球,处于垂直状态,…

Golang(壹)

爱情不需要华丽的言语&#xff0c;只需要默默的行动。 简介 应用领域&#xff1a; 下载vscode 使用vscode Go下载 - Go语言中文网 - Golang中文社区 下载sdk 解压到文件中&#xff0c;打开sdk解压文件 穿插dos操作系统知识点&#xff1a; 测试go语言环境 看到vscode 的目录结…