智能优化算法应用:基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.闪电连接过程算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用闪电连接过程算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.闪电连接过程算法

闪电连接过程算法原理请参考:https://blog.csdn.net/u011835903/article/details/120783760
闪电连接过程算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

闪电连接过程算法参数如下:

%% 设定闪电连接过程优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明闪电连接过程算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/233662.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flink实时电商数仓(二)

GitLab的用户创建和推送 在root用户-密码界面重新设置密码添加Leader用户和自己使用的用户使用root用户创建相应的群组使用Leader用户创建对应的项目设置分支配置为“初始推送后完全保护”设置.gitignore文件,项目配置文件等其他非通用代码无需提交安装gitlab proj…

(JAVA)-创建多线程的方式

1.继承Thread类 1.创建一个继承字Thread类的子类 2.重写Thread类的run方法 public class MyThread extends Thread{Overridepublic void run() {for (int i 0; i < 100; i) {System.out.println(getName()"hello");}} }3.创建Thread类的子类对象 4.通过子类对象调…

HarmonyOS应用开发实战—开箱即用的应用首页页面【ArkTS】【鸿蒙专栏-34】

一.HarmonyOS应用开发实战—开箱即用的应用首页页面【ArkTS】【鸿蒙专栏-34】 1.1 项目背景 HarmonyOS(鸿蒙操作系统)是华为公司推出的一种分布式操作系统。它被设计为一种全场景、全连接的操作系统,旨在实现在各种设备之间的无缝协同和共享,包括智能手机、平板电脑、智能…

轻量级购物小程序H5产品设计经典样例

主要是看到这个产品设计的不错值得借鉴特记录如下&#xff1a; 不过大多数购物app都大致相同&#xff0c;这个算是经典样例&#xff0c;几乎都可以复制&#xff0c;我第一次使用&#xff0c;感觉和顺畅。看上去产品是经过打磨的&#xff0c;布局非常好。内容也很丰富。支持异业…

Leetcode—128.最长连续序列【中等】

2023每日刷题&#xff08;六十四&#xff09; Leetcode—128.最长连续序列 实现代码 class Solution { public:int longestConsecutive(vector<int>& nums) {unordered_set<int> s;for(auto num: nums) {s.insert(num);}int longestNum 0;for(auto num: s) …

LeetCode day27

LeetCode day27 —今天做到树&#xff0c;&#xff0c;&#xff0c;对不起我的数据结构老师啊~~~ 7. 整数反转 给你一个 32 位的有符号整数 x &#xff0c;返回将 x 中的数字部分反转后的结果。 如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] &#xff0c…

【AI图集】猫狗的自动化合成图集

猫是一种哺乳动物&#xff0c;通常被人们作为宠物饲养。它们有柔软的毛发&#xff0c;灵活的身体和尖锐的爪子。猫是肉食性动物&#xff0c;主要以肉类为食&#xff0c;但也可以吃一些蔬菜和水果。猫通常在夜间活动&#xff0c;因此它们需要足够的玩具和活动空间来保持健康和快…

Golang(壹)

爱情不需要华丽的言语&#xff0c;只需要默默的行动。 简介 应用领域&#xff1a; 下载vscode 使用vscode Go下载 - Go语言中文网 - Golang中文社区 下载sdk 解压到文件中&#xff0c;打开sdk解压文件 穿插dos操作系统知识点&#xff1a; 测试go语言环境 看到vscode 的目录结…

SpringIOC之AnnotatedElementKey

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…

Unity学习笔记(零基础到就业)|Chapter01:C#入门

Unity学习笔记&#xff08;零基础到就业&#xff09;&#xff5c;Chapter01:C#入门 前言一、控制台输入输出语句二、初识变量1.一些好用的tips2.变量声明的固定写法3.变量类型 三、变量的本质1.变量的存储空间2.变量的本质&#xff1a;2进制 四、变量的命名规范1.必须遵守的规则…

centos开机自启动实战小案例

1.编写一个我们需要做事的脚本 #!/bin/bash # 打印 "Hello" echo "Hello,Mr.Phor" # 为了更好的能看到效果 我们把这段文本放置到一个文件中 如果重启能够看到 /a.txt文件 我们实验成功 echo "hahahahahahahaha" > /a.txt #每次开机 执行…

《空气质量持续改善行动计划》发布,汉威科技助力蓝天保卫战

近日&#xff0c;国务院印发《空气质量持续改善行动计划》&#xff0c;这是继2013年“大气十条”之后的第三个国家层面的保卫蓝天行动计划。 计划要求协同推进降碳、减污、扩绿、增长&#xff0c;以改善空气质量为核心&#xff0c;以减少重污染天气和解决人民群众身边的突出大…

保护您的Android应用程序:Android应用程序安全一览

保护您的Android应用程序&#xff1a;Android应用程序安全一览 我们都知道Android是为所有人设计的——开放、面向开发者、面向用户&#xff0c;这种开放性为今天和明天的移动技术提供了很多便利。然而&#xff0c;开放性也带来了需要妥善处理的安全风险。 安全是我们所有人都…

WPF仿网易云搭建笔记(7):HandyControl重构

文章目录 专栏和Gitee仓库前言相关文章 新建项目项目环境项目结构 代码结果结尾 专栏和Gitee仓库 WPF仿网易云 Gitee仓库 WPF仿网易云 CSDN博客专栏 前言 最近我发现Material Design UI的功能比较简单&#xff0c;想实现一些比较简单的功能&#xff0c;比如消息提示&#xff0…

2018年第七届数学建模国际赛小美赛C题共享单车对城市交通的影响解题全过程文档及程序

2018年第七届数学建模国际赛小美赛 C题 共享单车对城市交通的影响 原题再现&#xff1a; 共享自行车改变了许多城市的交通状况&#xff0c;许多大城市引入共享自行车来解决交通问题。我们需要定量评估共享自行车对城市交通的影响&#xff0c;以及相关的经济、社会和环境影响。…

node.js mongoose中间件(middleware)

目录 简介 定义模型 注册中间件 创建doc实例&#xff0c;并进行增删改查 方法名和注册的中间件名相匹配 执行结果 分析 错误处理中间件 手动抛出错误 注意点 简介 在mongoose中&#xff0c;中间件是一种允许在执行数据库操作前&#xff08;pre&#xff09;或后&…

算法设计与分析2023秋-头歌实验-实验七 动态规划

文章目录 第1关&#xff1a;数塔问题任务描述相关知识编程要求解题思路测试说明参考答案 第2关&#xff1a;最长公共子序列任务描述相关知识编程要求解题思路&#xff1a;测试说明参考答案 第3关&#xff1a;求序列-2 11 -4 13 -5 -2的最大子段和任务描述相关知识编程要求解题思…

docker 在线安装redis

1、远程仓库拉取redis镜像&#xff0c; docker pull redis&#xff0c;默认拉取最新版本 2、在本地宿主机文件夹下创建相关目录文件&#xff0c;供容器卷使用&#xff0c;创建 /usr/local/data/redisdocker/data 文件夹&#xff0c;准备一个纯净版 redis.conf 配置文件 &#x…

jdk 线程池与 tomcat 线程池对比

一、线程池的作用 1. 提高性能&#xff1a;线程的创建需要开辟虚拟机栈、本地方法栈、程序计数器等线程私有空间&#xff0c;同时也会一比一的创建一个内核线程&#xff0c;在线程销毁时需要回收这些系统资源。频繁地创建和销毁线程会大大浪费系统资源&#xff0c;这时候就需要…

【3D数据读取】利用JAVA读取GLB(GLTF)文件数据

了解GLB和GLTF&#xff1a; GLB和GLTF是用于共享3D数据的标准化文件格式。GLB是GLTF的二进制格式&#xff0c;而GLTF基于JSON&#xff0c;一种基于文本的数据格式。 GLB文件&#xff1a; 由一个头部和一个二进制数据块组成。头部包含文件的元数据&#xff0c;例如文件版本、文件…