《点云处理》 点云去噪

前言

通常从传感器(3D相机、雷达)中获取到的点云存在噪点(杂点、离群点、孤岛点等各种叫法)。噪点产生的原因有不同,可能是扫描到了不想要扫描的物体,可能是待测工件表面反光形成的,也可能是相机内部的原因。在进行其他算法处理之前,通常需要先去除噪声,避免带来干扰。去噪的方法有很多,效率和效果也是各不相同,应用场景也不太一样,本篇内容就是想要将不同的去噪方法进行归纳。

环境:

Windows + VS2019 + PCL1.11.1

在开始之前,先贴出用于测试的点云,可以看出来空间中漂浮了很多噪点。原始点云总数为5882482个点,x和y方向间距为0.05。
在这里插入图片描述

1.半径滤波

PCL中集成有半径滤波,可以用于噪点的去除。主要需要设定两个参数,一个是搜索半径,另一个是在搜索半径内近邻点的最小数量。这两个参数需要根据点云的x,y,z方向上的点间距来设定(或者说分辨率)。一般使用线扫相机或者结构光相机这类3D相机得到的点在x,y方向上间距都比较均匀。假设点间距是0.05,那么将搜索半径设置为0.1,则搜索半径内理论上在上下左右方向上分别有2个点,共8个点,所以近邻点最起码也有8个。

头文件:
#include <pcl/filters/radius_outlier_removal.h>

代码如下:

/// <summary>
/// 使用半径滤波进行点云噪点去除
/// </summary>
/// <param name="cloud">输入点云</param>
/// <param name="cloud_out">输出除噪后的点云</param>
/// <param name="radius">搜索半径</param>
/// <param name="neighbors">单个搜索内近邻点数</param>
/// <returns>return true表示去噪成功,return false表示失败</returns>
bool NoiseRemoveROR(const pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud_out, const float& radius,const int& neighbors)
{if (cloud == nullptr) return false;if (cloud->points.size() < 10) return false;pcl::RadiusOutlierRemoval<pcl::PointXYZ> rorfilter(true); // 初始化为true以获取被移除的索引rorfilter.setInputCloud(cloud);rorfilter.setRadiusSearch(radius);                 // 设置搜索半径rorfilter.setMinNeighborsInRadius(neighbors);      // 设置搜索半径内满足的点数//rorfilter.setUserFilterValue(1);                 // 将不符合要求的点更改为新的值,而不是去去除它们,与setKeepOrganized一起使用//rorfilter.setKeepOrganized(false);               // 保证有序点云的结构,与setUserFilterValue一起使用rorfilter.filter(*cloud_out);                      // 进行离群点去除return true;
}

一般近邻点的数量设置与搜索半径有直接关系。而经过测试发现,搜索的近邻点数量需要越多则耗时越长。较小的搜索半径只需要设置较小数量的近邻点,但是这样可能会导致有的噪点去除不干净。稍大一点的搜索半径以及近邻点数量适当调大可以得到更稳定的去噪效果。因此,效果和效率之间需要找到一个平衡点。
测试及结果:搜索半径设置为0.2,近邻点数量为20,耗时10.94s。效果如下:
在这里插入图片描述
针对于半径滤波耗时问题其实可以将点云使用直通滤波分成若干份,然后使用OpenMP对这几份点云并行处理进行半径滤波,将结果再合并成一个点云,这个方法可能能够起到加速的作用。

有一篇论文《Fast Radius Outlier Filter Variant for Large Point Clouds》,更快速的半径滤波,还未找到源码,若有人找到请联系我,感谢。

2.统计学滤波

统计学滤波也是一种比较常见的去噪算法。其官方解释如下:
The statistical outlier removal process is a bit more refined. First, for every point, the mean distance to its K neighbors is computed. Then, if we asume that the result is a normal (gaussian) distribution with a mean μ and a standard deviation σ, we can deem it safe to remove all points with mean distances that fall out of the global mean plus deviation. Basically, it runs a statistical analysis of the distances between neighboring points, and trims all which are not considered “normal” (you define what “normal” is with the parameters of the algorithm).

个人理解就是遍历点云,对于每个点,都先搜索与其最相近的k个点,计算这k个点与该点的距离,并得到一个平均距离和一个平均距离的标准差。然后比较距离是否是大于μ+stddev*σ,如果大于则表示是离群点。

头文件:#include <pcl/filters/statistical_outlier_removal.h>

代码如下:

/// <summary>
/// 使用PCL中集成的统计学滤波进行去噪
/// </summary>
/// <param name="cloud">输入点云</param>
/// <param name="cloud_out">输出点云</param>
/// <param name="k">搜索近邻点的个数</param>
/// <param name="stddev">平均距离标准差的乘数</param>
/// <returns>return true表示去噪成功,return false表示失败</returns>
bool NoiseRemoveSOR(const pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud_out, const int& k, const double& stddev)
{if (cloud == nullptr) return false;if (cloud->points.size() < 10) return false;pcl::StatisticalOutlierRemoval<pcl::PointXYZ> filter; // Filter object.filter.setInputCloud(cloud);filter.setMeanK(k);                  // Set number of neighbors to consider to K.filter.setStddevMulThresh(stddev);   // Points with a distance larger than stddev standard deviation of the mean distance will be outliers.filter.filter(*cloud_out);return true;
}

使用这个统计学滤波感觉还是十分耗时,但是效果确实是不错的。
测试及结果:近邻点k值的数量为20,系数设定为1.0,耗时11.07s。效果如下:
在这里插入图片描述
有一篇论文《Fast statistical outlier removal based method for large 3d point clouds of outdoor environments》,根据其题目理解来说是一种更快的统计学滤波方法去除离群点,论文还没看,源码也没找到,谁能找到麻烦联系我,感谢!

3.RANSAC

没错,就是RANSAC。使用RANSAC去去噪需要满足条件,那就是目标点云是具有几何特征的。如果目标点云是一个平面,那么就可以使用RANSAC拟合一个平面,并且将距离平面较远的点(外点)去除。这样当然也可以达到去噪的效果,而且速度还比较快。

头文件:
#include <pcl/kdtree/kdtree.h>
#include <pcl/segmentation/sac_segmentation.h>

/// <summary>
/// 使用PCL中集成的用于点云分割的RANSAC方法进行平面拟合
/// </summary>
/// <param name="cloud_in">输入待拟合的点云</param>
/// <param name="inliers">RANSAC拟合得到的内点</param>
/// <param name="coefficients">得到的平面方程参数</param>
/// <param name="iterations">平面拟合最大迭代次数</param>
/// <param name="threshold">RANSAC拟合算法距离阈值</param>
void SEG_RANSAC(const pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud_in, pcl::PointIndices::Ptr& inliers, Eigen::VectorXf& coefficients,const int& iterations, const double& threshold)
{if (inliers == nullptr) inliers.reset(new pcl::PointIndices);pcl::ModelCoefficients::Ptr coefficients_m(new pcl::ModelCoefficients);pcl::shared_ptr<pcl::search::KdTree<pcl::PointXYZ>> tree(new pcl::search::KdTree<pcl::PointXYZ>);tree->setInputCloud(cloud_in);pcl::SACSegmentation<pcl::PointXYZ> seg;seg.setOptimizeCoefficients(true);seg.setModelType(pcl::SACMODEL_PLANE);seg.setMethodType(pcl::SAC_RANSAC);seg.setMaxIterations(iterations);                     // 设置最大迭代次数seg.setDistanceThreshold(threshold);                  // 设定阈值seg.setNumberOfThreads(10);                           // 设置线程数量seg.setSamplesMaxDist(3, tree);seg.setInputCloud(cloud_in);seg.segment(*inliers, *coefficients_m);coefficients.resize(4);coefficients[0] = coefficients_m->values[0]; coefficients[1] = coefficients_m->values[1];coefficients[2] = coefficients_m->values[2]; coefficients[3] = coefficients_m->values[3];std::cout << "SEG coefficients: " << coefficients[0] << ", " << coefficients[1] << ", " << coefficients[2] << ", " << coefficients[3] << std::endl;
}

运行时间只需要1.5s,迭代了200次。速度比半径滤波和统计学滤波要快很多。但是这个方法也是很有局限性的,只适合特定点云才能用,而且如下图所示,距离平面较近的噪点无法去除,所以是存在去除噪点不干净的情况,如果追求速度,而对去噪要求没那么高,则可以考虑使用该方法。
在这里插入图片描述

4.欧式聚类

欧式聚类既可以用于分割,也可以用于去噪,其实跟上述半径滤波区别不大。噪点肯定是距离想要的点云比较“远”的,设置好minSize,把想要的点聚成一个类,噪点自然就去除了。

代码如下:

/// <summary>
/// PCL中集成的欧式聚类
/// </summary>
/// <param name="cloud">输入点云</param>
/// <param name="cluster_indices">聚类索引的数组</param>
/// <param name="tolerance ">距离阈值</param>
/// <param name="MinClusterSize">单个类最少的点数</param>
/// <param name="MaxClusterSize">单个类最大的点数</param>
/// <returns>return true表示有聚类结果,return false表示聚类失败</returns>
bool NoiseRemoveEC(const pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, std::vector<pcl::PointIndices>& cluster_indices, const double& tolerance,const int& MinClusterSize, const int& MaxClusterSize)
{if (cloud == nullptr) return false;if (cloud->points.size() < 10) return false;int maxSize = MaxClusterSize;if (maxSize < 0) maxSize = cloud->points.size();if (MinClusterSize > maxSize) return false;pcl::shared_ptr<pcl::search::KdTree<pcl::PointXYZ>> tree(new pcl::search::KdTree<pcl::PointXYZ>); // Creating the KdTree object for the search method of the extractiontree->setInputCloud(cloud);cluster_indices.clear();pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;    // 欧式聚类对象ec.setClusterTolerance(tolerance);                       // 设置近邻搜索的搜索半径为  单位是mec.setMinClusterSize(MinClusterSize);                 // 设置一个聚类需要的最少的点数目ec.setMaxClusterSize(maxSize);                        // 设置一个聚类需要的最大点数目ec.setSearchMethod(tree);                             // 设置点云的搜索机制ec.setInputCloud(cloud);                              // 输入聚类点云ec.extract(cluster_indices);                          // 从点云中提取聚类,并将点云索引保存在cluster_indices中if (cluster_indices.empty()) return false;return true;
}

设置的距离阈值为0.1,是两倍的点距大小(x,y方向点距都是0.05)。耗时10.9s。当距离阈值tolerance设置的比较大时,就会特别耗时,该方法就几乎不可用了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/233561.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

项目中webpack优化配置(持续更新)

项目中webpack优化配置 1. 开发效率&#xff0c; 体验 DLL&#xff08;开发过程中减少构建时间和增加应用程序的性能&#xff09; 使用 DllPlugin 进行分包&#xff0c;使用 DllReferencePlugin(索引链接) 对 manifest.json 引用&#xff0c;让一些基本不会改动的代码先打包…

大型语言模型:RoBERTa — 一种稳健优化的 BERT 方法

slavahead 一、介绍 BERT模型的出现BERT模型带来了NLP的重大进展。 BERT 的架构源自 Transformer&#xff0c;它在各种下游任务上取得了最先进的结果&#xff1a;语言建模、下一句预测、问答、NER标记等。 尽管 BERT 性能出色&#xff0c;研究人员仍在继续尝试其配置&#xff0…

Postman接口自动化测试之——批量执行(集合操作)

集合定义&#xff1a;在接口自动化测试过程中将一组请求&#xff08;多条请求&#xff09;保存到一起进行集中管理。方便执行过程中的维护、导出和执行等。 创建集合 在引导页点击“Collection”&#xff0c;或者在“Collection”标签点击图标&#xff1b; 字段解释 集合描述…

Oracle的学习心得和知识总结(三十一)| ODBC开放式数据库连接概述及应用程序开发

目录结构 注&#xff1a;提前言明 本文借鉴了以下博主、书籍或网站的内容&#xff0c;其列表如下&#xff1a; 1、参考书籍&#xff1a;《Oracle Database SQL Language Reference》 2、参考书籍&#xff1a;《PostgreSQL中文手册》 3、EDB Postgres Advanced Server User Gui…

无人机在融合通信系统中的应用

无人驾驶飞机简称“无人机”&#xff0c;是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞行器&#xff0c;现今无人机在航拍、农业、快递运输、测绘、新闻报道多个领域中都有深度的应用。 在通信行业中&#xff0c;无人机广泛应用于交通&#xff0c;救援&#xff0c;消…

CentOS:Docker 创建及镜像删除

1、安装docker 远程连接服务器&#xff0c;可以直接下载netsarang比较好用 家庭/学校免费 - NetSarang Website 如果有残留docker未删除干净&#xff0c;请使用 sudo yum -y remove docker docker-common docker-selinux docker-engine Step1&#xff1a;安装必要的一些…

【数据结构】栈的使用|模拟实现|应用|栈与虚拟机栈和栈帧的区别

目录 一、栈(Stack) 1.1 概念 1.2 栈的使用 1.3 栈的模拟实现 1.4 栈的应用场景 1. 改变元素的序列 2. 将递归转化为循环 3. 括号匹配 4. 逆波兰表达式求值 5. 出栈入栈次序匹配 6. 最小栈 1.5 概念区分 一、栈(Stack) 1.1 概念 栈&#xff1a;一种特殊的线性表&…

第十七章 爬虫scrapy登录与中间件2

文章目录 数据盘区太快会报错&#xff0c;setting中配置延迟 连接提取器

解决:Android 报错 Failed to transform exifinterface-1.2.0.jar

一、问题说明 Failed to transform exifinterface-1.2.0.jar (androidx.exifinterface:exifinterface:1.2.0) to match attributes {artifactTypeandroid-classes-jar, org.gradle.categorylibrary, org.gradle.libraryelementsjar, org.gradle.statusrelease, org.gradle.usa…

pycharm手动安装ini插件

pycharm中新增pytest.ini文件时发现&#xff0c;文件的图标不是配置文件的图标 原因是没有安装ini插件 安装插件的方式有很多种&#xff0c;今天通过去官网下载插件&#xff0c;再安装的方式 第一步&#xff1a;去官网搜索&#xff0c;地址是&#xff1a;https://plugins.jet…

使用深度学习的微光图像和视频增强:综述

1INTRODUCTION 微光图像增强&#xff08;LLIE&#xff09;旨在提高在光照较差的环境中捕获的图像的感知或可解释性。该领域的最新进展主要是基于深度学习的解决方案&#xff0c;其中采用了许多学习策略、网络结构、损失函数、训练数据等。在本文中&#xff0c;我们提供了一个全…

直流电、交流电和发电机、接地、变压器

直流电 此节内容主要摘录自&#xff1a;图文详解直流电与直流电路基本知识 直流电是指电流方向不随时间作周期性变化&#xff0c;由正极流向负极&#xff0c;但电流的大小可能会变化的电流。直流电可以分为稳定&#xff08;恒定&#xff09;直流和脉动直流两种&#xff0c;如下…

单片机应用实例:LED显示电脑电子钟

本例介绍一种用LED制作的电脑电子钟&#xff08;电脑万年历&#xff09;。其制作完成装潢后的照片如下图&#xff1a; 上图中&#xff0c;年、月、日及时间选用的是1.2寸共阳数码管&#xff0c;星期选用的是2.3寸数码管&#xff0c;温度选用的是0.5寸数码管&#xff0c;也可根据…

饥荒Mod 开发(十七):手动保存和加载,无限重生

饥荒Mod 开发(十六)&#xff1a;五格装备栏 饥荒游戏会自动保存&#xff0c;本来是一个好的机制&#xff0c;但是当角色死亡的时候存档会被删除&#xff0c;又要从头开始&#xff0c;有可能一不小心玩了很久的档就直接给整没了&#xff0c;又或者是打怪没爆好东西&#xff0c; …

LVS最终奥义之DR直接路由模式

1 LVS-DR(直接路由模式) 1.1 LVS-DR模式工作过程 1.客户端通过VIP将访问请求报文&#xff08;源IP为客户端IP&#xff0c;目标IP为VIP&#xff09;发送到调度器 2.调度器通过调度算法选择最适合的节点服务器并重新封装数据报文&#xff08;将源mac地址改为调度器的mac地址&am…

redis基本用法学习(字符串类型基本操作)

字符串类型是redis支持的最简单的数据类型&#xff0c;同时最简单的键值对类型也是key和value都是单个字符串&#xff0c;本质上就是字符串之间的相互映射&#xff0c;redis官网String类型简介页面提到可以用于缓存HTML片段或页面内容。   redis支持设置/获取单个键值对&…

机器学习 | 集成学习

团结就是力量&#xff01; Ensemble Learning 兼听则明&#xff0c;偏信则暗。 集成学习既是一种思想也是一类算法&#xff0c;它是建立在其他机器学习的算法之上&#xff0c;研究怎么让不同的算法之间进行协同。 既可以监督学习&#xff0c;也可以无监督学习。 集成学习用机器…

使用Gensim训练Word2vec模型

1、训练Gensim模型 import gensim # gensim 4.3.2 import jieba import re import warnings import logging warnings.filterwarnings(ignore)with open("dataset/sanguo.txt", r,encodingutf-8)as f: # 读入文本&#xff0c;此处使用的是三国演义&#xff0c;可自…

飞天使-k8s-知识点1-kubernetes架构简述

文章目录 名词功能要点 k8s核心要素CNCF 云原生框架简介k8s组建介绍 名词 CI 持续集成, 自动化构建和测试&#xff1a;通过使用自动化构建工具和自动化测试套件&#xff0c;持续集成可以帮助开发人员自动构建和测试他们的代码。这样可以快速检测到潜在的问题&#xff0c;并及早…

maven仓库导入jar和mvn命令汇总

目录 导入远程仓库 命令结构 命令解释 项目pom 输入执行 本地仓库导入 命令格式 命令解释 Maven命令汇总 mvn 参数 mvn常用命令 web项目相关命令 导入远程仓库 命令结构 mvn deploy:deploy-file -Dfilejar包完整名称 -DgroupIdpom文件中引用的groupId名 -Dartifa…