RabbitMQ 高级

1.发送者的可靠性

首先,我们一起分析一下消息丢失的可能性有哪些。消息从发送者发送消息,到消费者处理消息,需要经过的流程是这样的:


消息从生产者到消费者的每一步都可能导致消息丢失:

  • 发送消息时丢失:
    • 生产者发送消息时连接MQ失败
    • 生产者发送消息到达MQ后未找到Exchange(交换机)
    • 生产者发送消息到达MQ的Exchange后,未找到合适的Queue(队列)
    • 消息到达MQ后,处理消息的进程发生异常
  • MQ导致消息丢失:
    • 消息到达MQ,保存到队列后,尚未消费就突然宕机
  • 消费者处理消息时:
    • 消息接收后尚未处理突然宕机
    • 消息接收后处理过程中抛出异常

综上,我们要解决消息丢失问题,保证MQ的可靠性,就必须从3个方面入手:

  • 确保生产者一定把消息发送到MQ
  • 确保MQ不会将消息弄丢
  • 确保消费者一定要处理消息

1.1.生产者重试机制

首先第一种情况,就是生产者发送消息时,出现了网络故障,导致与MQ的连接中断。为了解决这个问题,SpringAMQP提供的消息发送时的重试机制。即:当RabbitTemplate与MQ连接超时后,多次重试。

修改publisher模块的application.yaml文件,添加下面的内容:

spring:rabbitmq:connection-timeout: 1s # 设置MQ的连接超时时间template:retry:enabled: true # 开启超时重试机制initial-interval: 1000ms # 失败后的初始等待时间multiplier: 1 # 失败后下次的等待时长倍数,下次等待时长 = initial-interval * multipliermax-attempts: 3 # 最大重试次数

我们利用命令停掉RabbitMQ服务:

docker stop mq

然后测试发送一条消息,会发现会每隔1秒重试1次,总共重试了3次。消息发送的超时重试机制配置成功了!

1.2.生产者确认机制

一般情况下,只要生产者与MQ之间的网路连接顺畅,基本不会出现发送消息丢失的情况,因此大多数情况下我们无需考虑这种问题。不过,在少数情况下,也会出现消息发送到MQ之后丢失的现象,比如:

  • MQ内部处理消息的进程发生了异常
  • 生产者发送消息到达MQ后未找到Exchange
  • 生产者发送消息到达MQ的Exchange后,未找到合适的Queue,因此无法路由

针对上述情况,RabbitMQ提供了生产者消息确认机制,包括Publisher ConfirmPublisher Return两种。在开启确认机制的情况下,当生产者发送消息给MQ后,MQ会根据消息处理的情况返回不同的回执

具体如图所示:
image.png
总结如下:

  • 当消息投递到MQ,但是路由失败时,通过Publisher Return返回异常信息,同时返回ack的确认信息,代表投递成功
  • 临时消息投递到了MQ,并且入队成功,返回ACK,告知投递成功
  • 持久消息投递到了MQ,并且入队完成持久化,返回ACK ,告知投递成功
  • 其它情况都会返回NACK,告知投递失败

其中acknack属于Publisher Confirm机制,ack是投递成功;nack是投递失败。而return则属于Publisher Return机制。

1.3.实现生产者确认

1.3.1.开启生产者确认

publisher模块的application.yaml中添加配置:

spring:rabbitmq:publisher-confirm-type: correlated # 开启publisher confirm机制,并设置confirm类型publisher-returns: true # 开启publisher return机制

这里publisher-confirm-type有三种模式可选:

  • none:关闭confirm机制
  • simple:同步阻塞等待MQ的回执
  • correlated:MQ异步回调返回回执

一般我们推荐使用correlated,回调机制。

1.3.2.定义ReturnCallback

每个RabbitTemplate只能配置一个ReturnCallback,因此我们可以在配置类中统一设置。我们在publisher模块定义一个配置类:
image.png
内容如下:

package com.itheima.publisher.config;import lombok.AllArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.core.ReturnedMessage;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.context.annotation.Configuration;import javax.annotation.PostConstruct;@Slf4j
@AllArgsConstructor
@Configuration
public class MqConfig {private final RabbitTemplate rabbitTemplate;@PostConstructpublic void init(){rabbitTemplate.setReturnsCallback(new RabbitTemplate.ReturnsCallback() {@Overridepublic void returnedMessage(ReturnedMessage returned) {log.error("触发return callback,");log.debug("exchange: {}", returned.getExchange());log.debug("routingKey: {}", returned.getRoutingKey());log.debug("message: {}", returned.getMessage());log.debug("replyCode: {}", returned.getReplyCode());log.debug("replyText: {}", returned.getReplyText());}});}
}

1.3.3.定义ConfirmCallback

由于每个消息发送时的处理逻辑不一定相同,因此ConfirmCallback需要在每次发消息时定义。具体来说,是在调用RabbitTemplate中的convertAndSend方法时,多传递一个参数:

image.png
这里的CorrelationData中包含两个核心的东西:

  • id:消息的唯一标示,MQ对不同的消息的回执以此做判断,避免混淆
  • SettableListenableFuture:回执结果的Future对象

将来MQ的回执就会通过这个Future来返回,我们可以提前给CorrelationData中的Future添加回调函数来处理消息回执:
image.png

我们新建一个测试,向系统自带的交换机发送消息,并且添加ConfirmCallback

@Test
void testPublisherConfirm() {// 1.创建CorrelationDataCorrelationData cd = new CorrelationData();// 2.给Future添加ConfirmCallbackcd.getFuture().addCallback(new ListenableFutureCallback<CorrelationData.Confirm>() {@Overridepublic void onFailure(Throwable ex) {// 2.1.Future发生异常时的处理逻辑,基本不会触发log.error("send message fail", ex);}@Overridepublic void onSuccess(CorrelationData.Confirm result) {// 2.2.Future接收到回执的处理逻辑,参数中的result就是回执内容if(result.isAck()){ // result.isAck(),boolean类型,true代表ack回执,false 代表 nack回执log.debug("发送消息成功,收到 ack!");}else{ // result.getReason(),String类型,返回nack时的异常描述log.error("发送消息失败,收到 nack, reason : {}", result.getReason());}}});// 3.发送消息rabbitTemplate.convertAndSend("hmall.direct", "q", "hello", cd);
}

执行结果如下:
image.png

可以看到,由于传递的RoutingKey是错误的,路由失败后,触发了return callback,同时也收到了ack。当我们修改为正确的RoutingKey以后,就不会触发return callback了,只收到ack。
而如果连交换机都是错误的,则只会收到nack。

2.MQ的可靠性

消息到达MQ以后,如果MQ不能及时保存,也会导致消息丢失,所以MQ的可靠性也非常重要。

2.1.数据持久化

为了提升性能,默认情况下MQ的数据都是在内存存储的临时数据,重启后就会消失。为了保证数据的可靠性,必须配置数据持久化,包括:

  • 交换机持久化
  • 队列持久化
  • 消息持久化

2.1.1.交换机持久化

在控制台的Exchanges页面,添加交换机时可以配置交换机的Durability参数:
image.png
设置为Durable就是持久化模式,Transient就是临时模式。

2.1.2.队列持久化

在控制台的Queues页面,添加队列时,同样可以配置队列的Durability参数:
image.png

2.1.3.消息持久化

在控制台发送消息的时候,可以添加很多参数,而消息的持久化是要配置一个properties
image.png

2.2.LazyQueue

在默认情况下,RabbitMQ会将接收到的信息保存在内存中以降低消息收发的延迟。但在某些特殊情况下,这会导致消息积压,比如:

  • 消费者宕机或出现网络故障
  • 消息发送量激增,超过了消费者处理速度
  • 消费者处理业务发生阻塞

一旦出现消息堆积问题,RabbitMQ的内存占用就会越来越高,直到触发内存预警上限。此时RabbitMQ会将内存消息刷到磁盘上,这个行为成为PageOut. PageOut会耗费一段时间,并且会阻塞队列进程。因此在这个过程中RabbitMQ不会再处理新的消息,生产者的所有请求都会被阻塞。

为了解决这个问题,从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的模式,也就是惰性队列。惰性队列的特征如下:

  • 接收到消息后直接存入磁盘而非内存
  • 消费者要消费消息时才会从磁盘中读取并加载到内存(也就是懒加载)
  • 支持数百万条的消息存储

而在3.12版本之后,LazyQueue已经成为所有队列的默认格式。因此官方推荐升级MQ为3.12版本或者所有队列都设置为LazyQueue模式。

2.2.1.控制台配置Lazy模式

在添加队列的时候,添加x-queue-mod=lazy参数即可设置队列为Lazy模式:
image.png

2.2.2.代码配置Lazy模式

在利用SpringAMQP声明队列的时候,添加x-queue-mod=lazy参数也可设置队列为Lazy模式:

@Bean
public Queue lazyQueue(){return QueueBuilder.durable("lazy.queue").lazy() // 开启Lazy模式.build();
}

这里是通过QueueBuilderlazy()函数配置Lazy模式,底层源码如下:
image.png

当然,我们也可以基于注解来声明队列并设置为Lazy模式:

@RabbitListener(queuesToDeclare = @Queue(name = "lazy.queue",durable = "true",arguments = @Argument(name = "x-queue-mode", value = "lazy")
))
public void listenLazyQueue(String msg){log.info("接收到 lazy.queue的消息:{}", msg);
}

3.消费者的可靠性

当RabbitMQ向消费者投递消息以后,需要知道消费者的处理状态如何。因为消息投递给消费者并不代表就一定被正确消费了,可能出现的故障有很多,比如:

  • 消息投递的过程中出现了网络故障
  • 消费者接收到消息后突然宕机
  • 消费者接收到消息后,因处理不当导致异常

2.1.消费者确认机制

为了确认消费者是否成功处理消息,RabbitMQ提供了消费者确认机制(Consumer Acknowledgement)。即:当消费者处理消息结束后,应该向RabbitMQ发送一个回执,告知RabbitMQ自己消息处理状态。回执有三种可选值:

  • ack:成功处理消息,RabbitMQ从队列中删除该消息
  • nack:消息处理失败,RabbitMQ需要再次投递消息
  • reject:消息处理失败并拒绝该消息,RabbitMQ从队列中删除该消息

一般reject方式用的较少,除非是消息格式有问题,那就是开发问题了。因此大多数情况下我们需要将消息处理的代码通过try catch机制捕获,消息处理成功时返回ack,处理失败时返回nack.

由于消息回执的处理代码比较统一,因此SpringAMQP帮我们实现了消息确认。并允许我们通过配置文件设置ACK处理方式,有三种模式:

  • none:不处理。即消息投递给消费者后立刻ack,消息会立刻从MQ删除。非常不安全,不建议使用
  • manual:手动模式。需要自己在业务代码中调用api,发送ackreject,存在业务入侵,但更灵活
  • auto:自动模式。SpringAMQP利用AOP对我们的消息处理逻辑做了环绕增强,当业务正常执行时则自动返回ack. 当业务出现异常时,根据异常判断返回不同结果:
    • 如果是业务异常,会自动返回nack
    • 如果是消息处理或校验异常,自动返回reject;

通过下面的配置可以修改SpringAMQP的ACK处理方式:

spring:rabbitmq:listener:simple:acknowledge-mode: none # 不做处理

修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理的异常:

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueueMessage(String msg) throws InterruptedException {log.info("spring 消费者接收到消息:【" + msg + "】");if (true) {throw new MessageConversionException("故意的");}log.info("消息处理完成");
}

测试可以发现:当消息处理发生异常时,消息依然被RabbitMQ删除了。

我们再次把确认机制修改为auto:

spring:rabbitmq:listener:simple:acknowledge-mode: auto # 自动ack

在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unacked(未确定状态):
image.png
放行以后,由于抛出的是消息转换异常,因此Spring会自动返回reject,所以消息依然会被删除:
image.png

我们将异常改为RuntimeException类型:

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueueMessage(String msg) throws InterruptedException {log.info("spring 消费者接收到消息:【" + msg + "】");if (true) {throw new RuntimeException("故意的");}log.info("消息处理完成");
}

在异常位置打断点,然后再次发送消息测试,程序卡在断点时,可以发现此时消息状态为unacked(未确定状态):
image.png放行以后,由于抛出的是业务异常,所以Spring返回ack,最终消息恢复至Ready状态,并且没有被RabbitMQ删除:
image.png
当我们把配置改为auto时,消息处理失败后,会回到RabbitMQ,并重新投递到消费者。

2.2.失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者。如果消费者再次执行依然出错,消息会再次requeue到队列,再次投递,直到消息处理成功为止。极端情况就是消费者一直无法执行成功,那么消息requeue就会无限循环,导致mq的消息处理飙升,带来不必要的压力:

image.png

为了应对上述情况Spring又提供了消费者失败重试机制:在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。

修改consumer服务的application.yml文件,添加内容:

spring:rabbitmq:listener:simple:retry:enabled: true # 开启消费者失败重试initial-interval: 1000ms # 初识的失败等待时长为1秒multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-intervalmax-attempts: 3 # 最大重试次数stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

重启consumer服务,重复之前的测试。可以发现:

  • 消费者在失败后消息没有重新回到MQ无限重新投递,而是在本地重试了3次
  • 本地重试3次以后,抛出了AmqpRejectAndDontRequeueException异常。查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是reject

结论:

  • 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
  • 重试达到最大次数后,Spring会返回reject,消息会被丢弃

2.3.失败处理策略

在之前的测试中,本地测试达到最大重试次数后,消息会被丢弃。这在某些对于消息可靠性要求较高的业务场景下,显然不太合适了。因此Spring允许我们自定义重试次数耗尽后的消息处理策略,这个策略是由MessageRecovery接口来定义的,它有3个不同实现:

  • RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式
  • ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队
  • RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机

比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。

1)在consumer服务中定义处理失败消息的交换机和队列

@Bean
public DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}

2)定义一个RepublishMessageRecoverer,关联队列和交换机

@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}

完整代码如下:

package com.itheima.consumer.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.DirectExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.retry.MessageRecoverer;
import org.springframework.amqp.rabbit.retry.RepublishMessageRecoverer;
import org.springframework.context.annotation.Bean;@Configuration
@ConditionalOnProperty(name = "spring.rabbitmq.listener.simple.retry.enabled", havingValue = "true")
public class ErrorMessageConfig {@Beanpublic DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");}@Beanpublic Queue errorQueue(){return new Queue("error.queue", true);}@Beanpublic Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");}@Beanpublic MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");}
}

2.4.业务幂等性

幂等性是一个数学概念,表示函数f(x) = f(f(x))。在程序开发中,幂等性指的是同一个业务执行一次或多次对业务状态的影响是一致的。然而,数据的更新往往不是幂等的,重复执行可能导致不同后果。在实际业务场景中,由于意外情况,业务可能会被重复执行,例如页面卡顿、服务间调用重试和MQ消息的重复投递。为了保证消息处理的幂等性,可以采用唯一消息ID业务状态判断两种方案。

2.4.1.唯一消息ID

这个思路非常简单:

  1. 每一条消息都生成一个唯一的id,与消息一起投递给消费者。
  2. 消费者接收到消息后处理自己的业务,业务处理成功后将消息ID保存到数据库
  3. 如果下次又收到相同消息,去数据库查询判断是否存在,存在则为重复消息放弃处理。

SpringAMQPMessageConverter自带了MessageID的功能,我们只要开启这个功能即可。以Jackson的消息转换器为例:

@Bean
public MessageConverter messageConverter(){// 1.定义消息转换器Jackson2JsonMessageConverter jjmc = new Jackson2JsonMessageConverter();// 2.配置自动创建消息id,用于识别不同消息,也可以在业务中基于ID判断是否是重复消息jjmc.setCreateMessageIds(true);return jjmc;
}

2.4.2.业务判断

业务判断就是基于业务本身的逻辑或状态来判断是否是重复的请求或消息,不同的业务场景判断的思路也不一样。相比较而言,消息ID的方案需要改造原有的数据库,所以我更推荐使用业务判断的方案。

以支付修改订单的业务为例,我们需要修改OrderServiceImpl中的markOrderPaySuccess方法:

    @Overridepublic void markOrderPaySuccess(Long orderId) {// 1.查询订单Order old = getById(orderId);// 2.判断订单状态if (old == null || old.getStatus() != 1) {// 订单不存在或者订单状态不是1,放弃处理return;}// 3.尝试更新订单Order order = new Order();order.setId(orderId);order.setStatus(2);order.setPayTime(LocalDateTime.now());updateById(order);}

上述代码逻辑上符合了幂等判断的需求,但是由于判断和更新是两步动作,因此在极小概率下可能存在线程安全问题。

我们可以合并上述操作为这样:

@Override
public void markOrderPaySuccess(Long orderId) {// UPDATE `order` SET status = ? , pay_time = ? WHERE id = ? AND status = 1lambdaUpdate().set(Order::getStatus, 2).set(Order::getPayTime, LocalDateTime.now()).eq(Order::getId, orderId).eq(Order::getStatus, 1).update();
}

注意看,上述代码等同于这样的SQL语句:

UPDATE `order` SET status = ? , pay_time = ? WHERE id = ? AND status = 1

我们在where条件中除了判断id以外,还加上了status必须为1的条件。如果条件不符(说明订单已支付),则SQL匹配不到数据,根本不会执行。

4.延迟消息

在电商的支付业务中,对于一些库存有限的商品,为了更好的用户体验,通常都会在用户下单时立刻扣减商品库存。例如电影院购票、高铁购票,下单后就会锁定座位资源,其他人无法重复购买。

但是这样就存在一个问题,假如用户下单后一直不付款,就会一直占有库存资源,导致其他客户无法正常交易,最终导致商户利益受损!

因此,电商中通常的做法就是:对于超过一定时间未支付的订单,应该立刻取消订单并释放占用的库存。但问题来了:如何才能准确的实现在下单后第30分钟去检查支付状态呢?

像这种在一段时间以后才执行的任务,我们称之为延迟任务,而要实现延迟任务,最简单的方案就是利用MQ的延迟消息了。

在RabbitMQ中实现延迟消息也有两种方案:

  • 死信交换机+TTL
  • 延迟消息插件

4.1.死信交换机和延迟消息

4.1.1.死信交换机

什么是死信?当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):

  • 消费者使用basic.rejectbasic.nack声明消费失败,并且消息的requeue参数设置为false
  • 消息是一个过期消息,超时无人消费
  • 要投递的队列消息满了,无法投递

如果一个队列中的消息已经成为死信,并且这个队列通过dead-letter-exchange属性指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机就称为死信交换机(Dead Letter Exchange)。而此时加入有队列与死信交换机绑定,则最终死信就会被投递到这个队列中。

死信交换机有什么作用呢?

  1. 收集那些因处理失败而被拒绝的消息
  2. 收集那些因队列满了而被拒绝的消息
  3. 收集因TTL(有效期)到期的消息 帮我精简这段话

4.1.2.延迟消息

前面两种作用场景可以看做是把死信交换机当做一种消息处理的最终兜底方案,与消费者重试时讲的RepublishMessageRecoverer作用类似。

而最后一种场景,大家设想一下这样的场景:如图,有一组绑定的交换机(ttl.fanout)和队列(ttl.queue)。但是ttl.queue没有消费者监听,而是设定了死信交换机hmall.direct,而队列direct.queue1则与死信交换机绑定,RoutingKey是blue:
image.png

假如我们现在发送一条消息到ttl.fanout,RoutingKey为blue,并设置消息的有效期为5000毫秒:
image.png

消息肯定会被投递到ttl.queue之后,由于没有消费者,因此消息无人消费。5秒之后,消息的有效期到期,成为死信:
image.png
死信被再次投递到死信交换机hmall.direct,并沿用之前的RoutingKey,也就是blue
image.png
由于direct.queue1hmall.direct绑定的key是blue,因此最终消息被成功路由到direct.queue1,如果此时有消费者与direct.queue1绑定, 也就能成功消费消息了。但此时已经是5秒钟以后了:
image.png
也就是说,publisher发送了一条消息,但最终consumer在5秒后才收到消息。我们成功实现了延迟消息

4.2.DelayExchange插件

基于死信队列虽然可以实现延迟消息,但是太麻烦了。因此RabbitMQ社区提供了一个延迟消息插件来实现相同的效果。官方文档说明:Scheduling Messages with RabbitMQ | RabbitMQ - Blog

4.2.1.下载

插件下载地址:
GitHub - rabbitmq/rabbitmq-delayed-message-exchange: Delayed Messaging for RabbitMQ
由于我们安装的MQ是3.8版本,因此这里下载3.8.17版本:
image.png

4.2.2.安装

因为我们是基于Docker安装,所以需要先查看RabbitMQ的插件目录对应的数据卷。

docker volume inspect mq-plugins

结果如下:

[{"CreatedAt": "2023-12-18T14:40:50+08:00","Driver": "local","Labels": null,"Mountpoint": "/var/lib/docker/volumes/mq-plugins/_data","Name": "mq-plugins","Options": null,"Scope": "local"}
]

插件目录被挂载到了/var/lib/docker/volumes/mq-plugins/_data这个目录,我们上传插件到该目录下。

接下来执行命令,安装插件:

docker exec -it mq rabbitmq-plugins enable rabbitmq_delayed_message_exchange

运行结果如下:

在这里插入图片描述

4.2.3.声明延迟交换机

基于注解方式:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "delay.queue", durable = "true"),exchange = @Exchange(name = "delay.direct", delayed = "true"),key = "delay"
))
public void listenDelayMessage(String msg){log.info("接收到delay.queue的延迟消息:{}", msg);
}

基于@Bean的方式:

package com.itheima.consumer.config;import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.core.*;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Slf4j
@Configuration
public class DelayExchangeConfig {@Beanpublic DirectExchange delayExchange(){return ExchangeBuilder.directExchange("delay.direct") // 指定交换机类型和名称.delayed() // 设置delay的属性为true.durable(true) // 持久化.build();}@Beanpublic Queue delayedQueue(){return new Queue("delay.queue");}@Beanpublic Binding delayQueueBinding(){return BindingBuilder.bind(delayedQueue()).to(delayExchange()).with("delay");}
}

4.2.4.发送延迟消息

发送消息时,必须通过x-delay属性设定延迟时间:

@Test
void testPublisherDelayMessage() {// 1.创建消息String message = "hello, delayed message";// 2.发送消息,利用消息后置处理器添加消息头rabbitTemplate.convertAndSend("delay.direct", "delay", message, new MessagePostProcessor() {@Overridepublic Message postProcessMessage(Message message) throws AmqpException {// 添加延迟消息属性message.getMessageProperties().setDelay(5000);return message;}});
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/233356.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

持续集成交付CICD:K8S 通过模板文件自动化完成前端项目应用发布

目录 一、实验 1.环境 2.GitLab 更新deployment文件 3.GitLab更新共享库前端项目CI与CD流水线 4.K8S查看前端项目版本 5.Jenkins 构建前端项目 6.Jenkins 再次构建前端项目 二、问题 1. Jenkins 构建CI 流水线报错 2. Jenkins 构建CI 流水线弹出脚本报错 3. Jenkins…

AI性能再提升12.5%,ZStack Cube 超融合一体机基于第五代英特尔®至强®可扩展处理器解决方案发布

12月15日&#xff0c;以“Al无处不在&#xff0c;创芯无所不及”为主题的2023英特尔新品发布会暨AI技术创新派对上&#xff0c;云轴科技ZStack与英特尔联合发布基于第五代英特尔 至强 可扩展处理器的 ZStack Cube 超融合一体机解决方案白皮书&#xff08;简称解决方案&#xff…

【HarmonyOS开发】ArkUI中的自定义弹窗

弹窗是一种模态窗口&#xff0c;通常用来展示用户当前需要的或用户必须关注的信息或操作。在弹出框消失之前&#xff0c;用户无法操作其他界面内容。ArkUI 为我们提供了丰富的弹窗功能&#xff0c;弹窗按照功能可以分为以下两类&#xff1a; 确认类&#xff1a;例如警告弹窗 Al…

C# 调用腾讯混元大模型

写在前面 今天用C#调用了一下腾讯混元大模型&#xff0c;调用代码贴一下&#xff0c;具体的效果等深入使用后再来评价。 GitHub - TencentCloud/tencentcloud-sdk-dotnet: Tencent Cloud API 3.0 SDK for .NET 腾讯混元大模型简介_腾讯混元大模型购买指南_腾讯混元大模型操作…

代码随想录27期|Python|Day18|二叉树|路径总和iii|找树左下角的值|从中序与后序遍历序列构造二叉树

第一次刷的时候题解都不是精简版 513. 找树左下角的值 - 力扣&#xff08;LeetCode&#xff09; 注意这道题不是寻找最左侧的左节点&#xff0c;而是寻找最底层位于左端的节点&#xff08;可能是左节点&#xff0c;有可能是右节点&#xff09;。 层序遍历 层序遍历比较简单&…

【代码随想录】刷题笔记Day36

前言 打球运动量不饱和&#xff0c;不太爽&#xff0c;来刷题爽爽 134. 加油站 - 力扣&#xff08;LeetCode&#xff09; 难点在于环形遍历&#xff0c;实际上和最大子序和的思路很像&#xff0c;小于0就从下个位置开始局部最优&#xff1a;当前累加rest[i]的和curSum一旦小…

Oracle的学习心得和知识总结(三十)| OLTP 应用程序的合成工作负载生成器Lauca论文翻译及学习

目录结构 注&#xff1a;提前言明 本文借鉴了以下博主、书籍或网站的内容&#xff0c;其列表如下&#xff1a; 1、参考书籍&#xff1a;《Oracle Database SQL Language Reference》 2、参考书籍&#xff1a;《PostgreSQL中文手册》 3、EDB Postgres Advanced Server User Gui…

Nvidia 驱动安装不完整记录

Nvidia 驱动安装不完整记录 安装 epel&#xff0c; sudo dnf install -y https://dl.fedoraproject.org/pub/epel/epel-releaselatest-8.noarch.rpm安装 gcc-toolset-11-gcc&#xff0c; dnf install gcc-toolset-11-gcc修改 gcc&#xff0c;make&#xff0c;as 为 gcc-tools…

c++ wake_ptr智能指针

转载自c语言中文网 在 C98/03 的基础上&#xff0c;C11 标准新引入了 shared_ptr、unique_ptr 以及 weak_ptr 这 3 个智能指针。其中&#xff0c;shared_ptr 和 unique_ptr 已经在前面章节做了详细地介绍&#xff0c;本节重点讲解 weak_ptr 智能指针的特性和用法。 注意学习 w…

springMVC-数据格式化

1、基本介绍 在一个springmvc项目中&#xff0c;当表单提交数据时&#xff0c;如何对表单提交的数据进行格式的转换呢&#xff1f; 只要是数据进行网络传输都是以字符串的形式&#xff0c;进入内存后才有数据类型。 springmvc在上下文环境内置了一些转换器&#xff0c…

【MyBatis-Plus】常用的内置接口

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于MyBatis-Plus的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 1.Service接口 1.1.Save 1.2.Sa…

leetcode每日一题打卡

leetcode每日一题 746.使用最小花费爬楼梯162.寻找峰值1901.寻找峰值Ⅱ 从2023年12月17日开始打卡~持续更新 746.使用最小花费爬楼梯 2023/12/17 代码 解法一 class Solution {public int minCostClimbingStairs(int[] cost) {int n cost.length;int[] dp new int[n1];dp[…

C51--小车——PWM调速

如何进行小车PWM调速&#xff1a; 原理&#xff1a; 全速前进&#xff1a;LeftCon1A 0&#xff1b;LeftCon1B 1&#xff1b; 完全停止&#xff1a;LeftCon1A 0&#xff1b;LeftCon1B 0&#xff1b;单位时间内&#xff0c;例如20ms&#xff0c;有15ms是全速&#xff0c;5m…

【牛客网】编程题:找到无序数组中最小的k个数(146)

[编程题]&#xff1a;找到无序数组中最小的k个数 热度指数&#xff1a;2394时间限制&#xff1a;C/C 2秒&#xff0c;其他语言4秒空间限制&#xff1a;C/C 256M&#xff0c;其他语言512M 算法知识视频讲解 给定一个整型数组arr&#xff0c;找到其中最小的k个数。 输入描述: 输…

Linux常用基本命令操作

目录 一、认识shell 1、什么是shell 2、命令的本质 3、内部命令和外部命令 4、harsh缓存 5、命令执行的过程 6、如果打了一个命令&#xff0c;提示该命令不存在 7、命令提示符 8、Linux系统文件夹 二、Linux常用命令 1、通用Linux命令行格式 2、编辑Linux命令行的辅…

Spring Boot + MinIO 实现文件切片极速上传技术

文章目录 1. 引言2. 文件切片上传简介3. 技术选型3.1 Spring Boot3.2 MinIO 4. 搭建Spring Boot项目5. 集成MinIO5.1 配置MinIO连接信息5.2 MinIO配置类 6. 文件切片上传实现6.1 控制器层6.2 服务层6.3 文件切片上传逻辑 7. 文件合并逻辑8. 页面展示9. 性能优化与拓展9.1 性能优…

qt源码链接C++automic

qaction.cpp source code [qtbase/src/widgets/kernel/qaction.cpp] - Codebrowser C原子变量atomic详解 - 知乎 (zhihu.com)

[C++ 从入门到精通] 15.友元函数、友元类、友元成员函数

&#x1f4e2;博客主页&#xff1a;https://loewen.blog.csdn.net&#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;本文由 丶布布原创&#xff0c;首发于 CSDN&#xff0c;转载注明出处&#x1f649;&#x1f4e2;现…

统计分析绘图软件 GraphPad Prism 10 mac功能介绍

GraphPad Prism mac是一款专业的统计和绘图软件&#xff0c;主要用于生物医学研究、实验设计和数据分析。 GraphPad Prism mac功能和特点 数据导入和整理&#xff1a;GraphPad Prism 可以导入各种数据格式&#xff0c;并提供直观的界面用于整理、编辑和管理数据。用户可以轻松地…

qsort函数应用

1.引入 我们前面学习了一些常见的排序方法&#xff0c;比如冒泡排序等&#xff0c;但它仅局限于整型的排序&#xff0c;今天我们要介绍一个牛气哄哄的库函数qsort函数&#xff0c;这个函数可就厉害了&#xff0c;能排序任意类型数据&#xff0c;掌握后可谓受益终身&#xff0c;…