每个开发人员都应该知道的六个生成式 AI 框架和工具

在快速发展的技术环境中,生成式人工智能是一股革命性的力量,它改变了开发人员处理复杂问题和创新的方式。本文深入探讨了生成式 AI 的世界,揭示了对每个开发人员都至关重要的框架和工具。

1. LangChain

LangChain的

LangChain 由 Harrison Chase 开发并于 2022 年 10 月首次亮相,是一个开源平台,旨在构建由 LLM 驱动的强大应用程序,例如 ChatGPT 等聊天机器人和各种量身定制的应用程序。

LangChain 旨在为数据工程师提供一个包罗万象的工具包,用于在各种用例中使用 LLM,包括聊天机器人、自动问答、文本摘要等。

LangChain如何处理和处理信息以响应用户提示

上图显示了 LangChain 如何处理和处理信息以响应用户提示。最初,系统从一个包含大量数据的大型文档开始。然后,该文档被分解为更小、更易于管理的块。

这些块随后被嵌入到向量中——这是一个将数据转换为系统可以快速有效地检索的格式的过程。这些向量存储在向量存储中,该存储本质上是为处理矢量化数据而优化的数据库。

当用户在系统中输入提示时,LangChain 会查询这个向量存储,以查找与用户请求非常匹配或相关的信息。该系统使用大型 LLM 来理解用户提示的上下文和意图,从而指导从向量存储中检索相关信息。

一旦确定了相关信息,LLM 就会使用它来生成或完成准确解决查询的答案。最后一步最终是用户收到定制的响应,这是系统数据处理和语言生成功能的输出。

2. SingleStore Notebooks

单店

SingleStore Notebook 基于 Jupyter Notebook,是一种创新工具,可显著增强数据探索和分析过程,特别是对于那些使用 SingleStore 分布式 SQL 数据库的用户。它与 Jupyter Notebook 的集成使其成为数据科学家和专业人士熟悉且功能强大的平台。以下是其主要功能和优势的摘要:

  • 本机 SingleStore SQL 支持:此功能简化了直接从 Notebook 查询 SingleStore 分布式 SQL 数据库的过程。它消除了对复杂连接字符串的需求,为数据探索和分析提供了一种更安全、更直接的方法。
  • SQL/Python 互操作性:这允许 SQL 查询和 Python 代码之间的无缝集成。用户可以在 Notebook 中执行 SQL 查询,并直接在 Python 数据帧中使用结果,反之亦然。这种互操作性对于高效的数据操作和分析至关重要。
  • 协作工作流:Notebook 支持共享和协作编辑,使团队成员能够共同处理数据分析项目。此功能增强了团队有效协调和组合其专业知识的能力。
  • 交互式数据可视化:通过对 Matplotlib 和 Plotly 等流行数据可视化库的支持,SingleStore Notebook 使用户能够直接在笔记本环境中创建交互式且信息丰富的图表和图形。此功能对于需要直观地传达其发现的数据科学家至关重要。
  • 易用性和学习资源:该平台用户友好,具有模板和文档,可帮助新用户快速入门。这些资源对于学习笔记本的基础知识和执行复杂的数据分析任务非常宝贵。
  • 未来的增强和集成:SingleStore 团队致力于不断改进 Notebook,并计划引入导入/导出、代码自动完成和适用于各种方案的 Notebook 库等功能。此外,人们还期待机器人功能能够促进 SingleStoreDB 中的 SQL 或 Python 编码。
  • 简化 Python 代码集成:未来的目标是更轻松地在笔记本中对 Python 代码进行原型设计,并将此代码作为存储过程集成到数据库中,从而提高系统的整体效率和功能。

SingleStore Notebook 是面向数据专业人员的强大工具,它将 Jupyter Notebook 的多功能性与用于 SingleStore 的 SQL 数据库的特定增强功能相结合。它专注于易用性、协作和交互式数据可视化,以及未来增强的承诺,使其成为数据科学和机器学习社区的宝贵资源。

3. LlamaIndex

骆驼指数

LlamaIndex 是一个高级编排框架,旨在增强 GPT-4 等 LLM 的功能。虽然 LLM 本身就很强大,在庞大的公共数据集上进行了训练,但它们通常缺乏与私有或特定领域数据进行交互的方法。LlamaIndex 弥合了这一差距,提供了一种结构化的方式来摄取、组织和利用各种数据源,包括 API、数据库和 PDF。

通过将这些数据索引为针对 LLM 优化的格式,LlamaIndex 促进了自然语言查询,使用户能够无缝地与他们的私有数据进行对话,而无需重新训练模型。该框架用途广泛,既适合具有高级 API 以进行快速设置的新手,也适合通过较低级别的 API 寻求深度定制的专家。从本质上讲,LlamaIndex 释放了 LLM 的全部潜力,使它们更容易访问和适用于个性化的数据需求。

LlamaIndex 的工作原理

LlamaIndex 充当桥梁,将 LLM 的强大功能与不同的数据源连接起来,从而开启了一个新的应用程序领域,可以利用自定义数据和高级语言模型之间的协同作用。通过提供用于数据摄取、索引和自然语言查询界面的工具,LlamaIndex 使开发人员和企业能够构建强大的数据增强应用程序,从而显着增强决策和用户参与度。

骆驼指数

LlamaIndex 通过从一组文档开始的系统工作流程进行操作。最初,这些文档会经历一个加载过程,在该过程中它们被导入到系统中。加载后,对数据进行解析,以易于理解的方式分析和构建内容。解析后,将对信息进行索引,以实现最佳检索和存储。

这些索引数据安全地存储在标有“存储”的中央存储库中。当用户或系统希望从此数据存储中检索特定信息时,他们可以启动查询。作为对查询的响应,相关数据被提取并作为响应传递,响应可能是一组相关文档或从中提取的特定信息。整个过程展示了 LlamaIndex 如何有效地管理和检索数据,确保快速准确地响应用户查询。

4. Llama 2

骆驼2

Llama 2 是由 Meta 开发的最先进的语言模型。它是原始 LLaMA 的继任者,在规模、效率和性能方面进行了增强。Llama 2 型号的参数范围从 7B 到 70B 不等,可满足不同的计算能力和应用需求。Llama 2 专为聊天机器人集成量身定制,在对话用例中大放异彩,提供细致入微且连贯的响应,突破了对话式 AI 所能实现的界限。

Llama 2 使用公开可用的在线数据进行预训练。这涉及将模型暴露给大量文本数据,如书籍、文章和其他书面内容来源。此预训练的目标是帮助模型学习一般语言模式并获得对语言结构的广泛理解。它还涉及从人类反馈 (RLHF) 中进行监督微调和强化学习。

RLHF 的一个组成部分是拒绝抽样,它涉及从模型中选择响应,并根据人类反馈接受或拒绝它。RLHF 的另一个组成部分是近端策略优化 (PPO),它涉及直接根据人类反馈更新模型的策略。最后,迭代优化通过监督迭代和校正确保模型达到所需的性能水平。

5. Hugging Face

拥抱脸

Hugging Face 是一个多方面的平台,在人工智能领域发挥着至关重要的作用,尤其是在自然语言处理 (NLP) 和生成式 AI 领域。它包含各种元素,这些元素协同工作,使用户能够探索、构建和共享 AI 应用程序。

以下是其关键方面的细分:

1. 模型中心

  • Hugging Face 拥有大量预训练模型库,用于各种 NLP 任务,包括文本分类、问答、翻译和文本生成。
  • 这些模型在大型数据集上进行训练,可以针对特定要求进行微调,使其易于用于各种目的。
  • 这消除了用户从头开始训练模型的需要,从而节省了时间和资源。

2. 数据集

  • 除了模型库之外,Hugging Face 还提供对 NLP 任务的大量数据集的访问。
  • 这些数据集涵盖了各种领域和语言,为训练和微调模型提供了宝贵的资源。
  • 用户还可以贡献自己的数据集,丰富平台的数据资源并促进社区协作。

3. 模型训练和微调工具

  • Hugging Face 提供了用于在特定数据集和任务上训练和微调现有模型的工具和功能。
  • 这使用户能够根据自己的特定需求定制模型,从而提高其在目标应用中的性能和准确性。
  • 该平台提供了灵活的培训选项,包括个人机器上的本地培训或针对大型模型的基于云的解决方案。

4. 应用程序构建

  • Hugging Face 通过与 TensorFlow 和 PyTorch 等流行的编程库无缝集成,促进了 AI 应用程序的开发。
  • 这允许开发人员利用预先训练的模型构建聊天机器人、内容生成工具和其他 AI 驱动的应用程序。
  • 提供大量应用程序模板和教程来指导用户并加快开发过程。

5. 社区与协作

  • Hugging Face 拥有一个由开发人员、研究人员和 AI 爱好者组成的充满活力的社区。
  • 该平台通过模型共享、代码存储库和论坛等功能促进协作。
  • 这种协作环境促进了知识共享,加速了创新,并推动了 NLP 和生成式 AI 技术的进步。

Hugging Face 不仅仅是一个模型存储库。它是一个全面的平台,包含模型、数据集、工具和蓬勃发展的社区,使用户能够轻松探索、构建和共享 AI 应用程序。对于希望在努力中利用人工智能力量的个人和组织来说,这使其成为一项宝贵的资产。

6. Haystack

草垛

Haystack 可以归类为一个端到端框架,用于构建由各种 NLP 技术提供支持的应用程序,包括但不限于生成式 AI。虽然它并不直接专注于从头开始构建生成模型,但它提供了一个强大的平台,用于:

1. 检索增强生成 (RAG)

Haystack擅长将基于检索和生成的方法相结合,用于搜索和内容创建。它允许集成各种检索技术,包括向量搜索和传统关键字搜索,以检索相关文档以进行进一步处理。然后,这些文档将作为生成模型的输入,从而产生更有针对性和上下文相关的输出。

2. 多样化的 NLP 组件

Haystack 为各种 NLP 任务提供了一套全面的工具和组件,包括文档预处理、文本摘要、问答和命名实体识别。这允许构建复杂的管道,将多种 NLP 技术结合起来以实现特定目标。

3. 灵活性和开源

Haystack 是一个开源框架,建立在流行的 NLP 库(如 Transformers 和 Elasticsearch)之上。这允许与现有工具和工作流程进行定制和集成,使其能够适应不同的需求。

4. 可扩展性和性能

Haystack 旨在有效地处理大型数据集和工作负载。它与 Pinecone 和 Milvus 等强大的矢量数据库集成,即使处理数百万个文档,也能快速准确地搜索和检索。

5. 生成式人工智能集成

Haystack 与 GPT-3 和 BART 等流行的生成模型无缝集成。这允许用户利用这些模型的强大功能,在基于 Haystack 构建的应用程序中执行文本生成、摘要和翻译等任务。

虽然 Haystack 的重点不仅仅放在生成式 AI 上,但它为构建利用这项技术的应用程序提供了坚实的基础。它在检索、多样化的 NLP 组件、灵活性和可扩展性方面的综合优势使其成为开发人员和研究人员探索生成式 AI 在各种应用中的潜力的宝贵框架。

总结

生成式人工智能的格局正在迅速发展,HuggingFace、LangChain、LlamaIndex、Llama2、Haystack 和 SingleStore Notebooks 等框架和工具处于领先地位。这些技术为开发人员提供了将 AI 集成到其项目中的丰富选择,无论他们从事的是自然语言处理、数据分析还是复杂的 AI 应用程序。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/232742.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ansible自动化运维以及模块使用

ansible的作用: 远程操作主机功能 自动化运维(playbook剧本基于yaml格式书写) ansible是基于python开发的配置管理和应用部署工具。在自动化运维中,现在是异军突起 ansible能够批量配置、部署、管理上千台主机。类似于Xshell的一键输入工具。不需要每…

通过层进行高效学习:探索深度神经网络中的层次稀疏表示

一、介绍 深度学习中的层次稀疏表示是人工智能领域日益重要的研究领域。本文将探讨分层稀疏表示的概念、它们在深度学习中的意义、应用、挑战和未来方向。 最大限度地提高人工智能的效率和性能:深度学习系统中分层稀疏表示的力量。 二、理解层次稀疏表示 分层稀疏表…

JDK各个版本特性讲解-JDK19特性

JDK各个版本特性讲解-JDK19特性 一、JAVA19概述二、新特性介绍1. 记录模式(预览版本)2.Linux/RISC-V 移植3.外部函数和内存 API (预览版)4.虚拟线程(预览版)5.Vector API (第四次孵化)6.Switch 模式匹配(第三预览版&am…

从C代码制作chm开发文档【doxygen + graphviz+winChm】

需要的工具: 1. doxygen 最新版本 2. graphviz 最新版本 3. winChm破解版本 1. 最后制作的效果 2. 生成HTML文档 生成hmtl文档是勾选如下2项,为生成chm准备: 需要选择如下2项: generate HTMLHELP 生…

C语言数据结构-排序

文章目录 1 排序的概念及运用1.1 排序的概念1.2 排序的应用 2 插入排序2.1 直接插入排序2.2 希尔排序2.3 直接排序和希尔排序对比 3 选择排序3.1 堆排序3.2 直接选择排序 4 交换排序4.1 冒泡排序4.2 快速排序4.2.1 挖坑法14.2.2 挖坑法24.2.3 挖坑法3 5 并归排序6 十万级别数据…

深入探索Git的高级技巧与神奇操作(分支,高效合并)

欢迎来到我的博客,代码的世界里,每一行都是一个故事 深入探索Git的高级技巧与神奇操作 前言强制推送的妙用1. 什么是强制推送?2. 为什么需要使用强制推送?3. 强制推送的风险与注意事项4. 如何正确、安全地执行强制推送步骤&#x…

vCenter HA拆分和部署

原创作者:运维工程师 谢晋 vCenter HA拆分和部署 拆分vCenter HA部署vCenter HA 拆分vCenter HA 客户vCenter HA内一台虚拟机出现故障无法连接,报错如下: 点击移除集群报错如下: 查找官方KB,按照官方KB进行移除…

PyCharm关闭项目很慢

我的版本: PyCharm 2023.2.5 (Professional Edition) 问题: 关闭项目的时候显示一直在关闭项目 (单次解决:任务管理器里面杀掉PyCharm) 解决方案: 在PyCharm中按下快捷键 CtrlShiftA。 输入Registry或…

如何同时给每张PPT插入不同的图片?这2种方法可行!

有时候创作PPT,我们需要把几十张图片插入到PowerPoint中,每张图片作为一张幻灯片,如果一张张手动操作,那就未免太花时间了。今天小编来分享2种方法,可以让您快速给每张PPT插入不同图片。 方法一、使用“创建相册” 1.…

第三方软件验收测试对于软件项目验收的重要性

软件公司开发出一款软件产品后需要通过一系列的验收测试才能顺利上市,从而被最终用户使用。验收测试是部署软件之前的最后一个测试操作。在软件产品完成了单元测试、集成测试和系统测试之后,产品发布之前所进行的软件测试活动。由于软件企业会将更多的精…

护肤品类小红书素人达人的推广报价是多少?

小红书是一款集社交和电商于一体的平台,用户可以在上面分享生活点滴、购物心得、旅游攻略等。近年来,随着护肤美妆市场的不断扩大,越来越多的品牌和商家选择在小红书上投放广告,借助素人达人的影响力为产品引流。那么,…

Word的兼容性问题很常见,禁用兼容模式虽步不是最有效的,但可以解决兼容性问题

当你在较新版本的Word应用程序中打开用较旧版本的Word创建的文档时,会出现兼容性问题。错误通常发生在文件名附近(兼容模式)。兼容性模式问题(暂时)禁用Word功能,从而限制使用较新版本Word的用户编辑文档。…

腾讯云debian服务器的连接与初始化

目录 1. 远程连接2. 软件下载3. 设置开机自启动 1. 远程连接 腾讯云给的服务器在安装好系统之后,只需要在防火墙里面添加一个白名单(ip 或者域名)就能访问了。 防火墙添加本机WLAN的IPv4白名单,本地用一个远程工具连接&#xff…

Java第十七章总结

数据库基础 SQL语言 1、select 语句 select 语句用于从数据中检索数据。语法如下: SELECT 搜选字段列表 FROM 数据表名 WHERE 条件表达式 GROUP BY 字段名 HAVING 条件表达式(指定分组的条件) ORDER BY 字段名[ASC|DESC] 2、insert 语句 insert 语句用于向表中插入…

动手学深度学习2 安装环境

pytorch环境安装 1. windows 环境安装2. mac环境安装3. linux环境安装1. 申请云服务器 链接机器--Ubuntu2. 环境配置 4. 不安装环境直接使用colabQA 课程链接: https://www.bilibili.com/video/BV18p4y1h7Dr?p1&vd_sourceeb04c9a33e87ceba9c9a2e5f09752ef8 1.…

Pycharm中如何使用Markdown?只需装这个插件!

一、前言 由于Markdown的轻量化、易读易写特性,并且对于图片,图表、数学式都有支持,许多网站都广泛使用Markdown来撰写帮助文档或是用于论坛上发表消息。 如GitHub、Reddit、Diaspora、Stack Exchange、OpenStreetMap 、SourceForge、简书等…

[每周一更]-(第28期):Windows服务自启动设置

需求:有时候有些软件,想在开机后自启动,但是由于屏幕需要录入密码,但是普通开机启动的应用,需要在录入密码进去Windows界面才能启动,但是 不用解锁屏幕但需要运行的应用还是有的,比如一些软件远…

《每天一分钟学习C语言·二》

1、当使用const关键字变量就无法修改可当常量来用。常量指针不能通过指针来改变变量的值,但可以通过其他引用来改变变量的值常量指针也可以指向其他变量地址,如 int a5,b6; const int *pt &a; *pt6; //错误 a6; //正确 pt&b; //正确指针常量指…

互式流程图|BPMN JointJS+ JavaScript 3.7.3 Crack

JointJS 是 JavaScript 图表库为卓越的 UI 提供支持 使用经过验证的库快速、自信地构建高级视觉和无代码/低代码应用程序。 赋能全球行业领导者 使用 JointJS 构建的图表 一个库,‍无限 UI 选项 直接在您的应用程序中享受交互式流程图、BPMN 和其他图表工作室。利用…

7000字详解ERP管理系统!

在当今竞争激烈的商业世界中,中小企业不仅需要保持灵活性,更需要高效管理企业资源。 你可能听说过ERP系统,但它究竟是什么?它为何成为中小企业管理的不二选择?又是如何助力中小企业整合资源、提升效率,并在…