Python 全栈体系【四阶】(七)

第四章 机器学习

六、多项式回归

1. 什么是多项式回归

线性回归适用于数据呈线性分布的回归问题。如果数据样本呈明显非线性分布,线性回归模型就不再适用(下图左),而采用多项式回归可能更好(下图右)。例如:

在这里插入图片描述

2. 多项式模型定义

与线性模型相比,多项式模型引入了高次项,自变量的指数大于 1,例如一元二次方程:

y = w 0 + w 1 x + w 2 x 2 y = w_0 + w_1x + w_2x^2 y=w0+w1x+w2x2

一元三次方程:

y = w 0 + w 1 x + w 2 x 2 + w 3 x 3 y = w_0 + w_1x + w_2x^2 + w_3x ^ 3 y=w0+w1x+w2x2+w3x3

推广到一元 n 次方程:

y = w 0 + w 1 x + w 2 x 2 + w 3 x 3 + . . . + w n x n y = w_0 + w_1x + w_2x^2 + w_3x ^ 3 + ... + w_nx^n y=w0+w1x+w2x2+w3x3+...+wnxn

上述表达式可以简化为:

y = ∑ i = 1 N w i x i y = \sum_{i=1}^N w_ix^i y=i=1Nwixi

3. 与线性回归的关系

多项式回归可以理解为线性回归的扩展,在线性回归模型中添加了新的特征值。例如,要预测一栋房屋的价格,有 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3三个特征值,分别表示房子长、宽、高,则房屋价格可表示为以下线性模型:

y = w 1 x 1 + w 2 x 2 + w 3 x 3 + b y = w_1 x_1 + w_2 x_2 + w_3 x_3 + b y=w1x1+w2x2+w3x3+b

对于房屋价格,也可以用房屋的体积,而不直接使用 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3三个特征:

y = w 0 + w 1 x + w 2 x 2 + w 3 x 3 y = w_0 + w_1x + w_2x^2 + w_3x ^ 3 y=w0+w1x+w2x2+w3x3

相当于创造了新的特征 x , x x, x x,x = 长 _ 宽 _ 高。

以上两个模型可以解释为:

房屋价格是关于长、宽、高三个特征的线性模型

房屋价格是关于体积的多项式模型

因此,可以将一元 n 次多项式变换成 n 元一次线性模型。

4. 多项式回归实现

对于一元 n 次多项式,同样可以利用梯度下降对损失值最小化的方法,寻找最优的模型参数 w 0 , w 1 , w 2 , . . . , w n w_0, w_1, w_2, ..., w_n w0,w1,w2,...,wn。可以将一元 n 次多项式,变换成 n 元一次多项式,求线性回归。以下是一个多项式回归的实现。

# 多项式回归示例
import numpy as np
# 线性模型
import sklearn.linear_model as lm
# 模型性能评价模块
import sklearn.metrics as sm
import matplotlib.pyplot as mp
# 管线模块
import sklearn.pipeline as pl
import sklearn.preprocessing as sptrain_x, train_y = [], []   # 输入、输出样本
with open("poly_sample.txt", "rt") as f:for line in f.readlines():data = [float(substr) for substr in line.split(",")]train_x.append(data[:-1])train_y.append(data[-1])train_x = np.array(train_x)  # 二维数据形式的输入矩阵,一行一样本,一列一特征
train_y = np.array(train_y)  # 一维数组形式的输出序列,每个元素对应一个输入样本
# print(train_x)
# print(train_y)# 将多项式特征扩展预处理,和一个线性回归器串联为一个管线
# 多项式特征扩展:对现有数据进行的一种转换,通过将数据映射到更高维度的空间中
# 进行多项式扩展后,我们就可以认为,模型由以前的直线变成了曲线
# 从而可以更灵活的去拟合数据
# pipeline连接两个模型
model = pl.make_pipeline(sp.PolynomialFeatures(3), # 多项式特征扩展,扩展最高次项为3lm.LinearRegression())# 用已知输入、输出数据集训练回归器
model.fit(train_x, train_y)
# print(model[1].coef_)
# print(model[1].intercept_)# 根据训练模型预测输出
pred_train_y = model.predict(train_x)# 评估指标
err4 = sm.r2_score(train_y, pred_train_y)  # R2得分, 范围[0, 1], 分值越大越好
print(err4)# 在训练集之外构建测试集
test_x = np.linspace(train_x.min(), train_x.max(), 1000)
pre_test_y = model.predict(test_x.reshape(-1, 1)) # 对新样本进行预测# 可视化回归曲线
mp.figure('Polynomial Regression', facecolor='lightgray')
mp.title('Polynomial Regression', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(train_x, train_y, c='dodgerblue', alpha=0.8, s=60, label='Sample')mp.plot(test_x, pre_test_y, c='orangered', label='Regression')mp.legend()
mp.show()

打印输出:

0.9224401504764776

执行结果:

在这里插入图片描述

5. 过拟合与欠拟合

5.1 什么是欠拟合、过拟合

在上一小节多项式回归示例中,多项特征扩展器 PolynomialFeatures()进行多项式扩展时,指定了最高次数为 3,该参数为多项式扩展的重要参数,如果选取不当,则可能导致不同的拟合效果。下图显示了该参数分别设为 1、20 时模型的拟合图像:

在这里插入图片描述

这两种其实都不是好的模型。前者没有学习到数据分布规律,模型拟合程度不够,预测准确度过低,这种现象称为“欠拟合”;后者过于拟合更多样本,以致模型泛化能力(新样本的适应性)变差,这种现象称为“过拟合”。欠拟合模型一般表现为训练集、测试集下准确度都比较低;过拟合模型一般表现为训练集下准确度较高、测试集下准确度较低。 一个好的模型,不论是对于训练数据还是测试数据,都有接近的预测精度,而且精度不能太低。

【思考 1】以下哪种模型较好,哪种模型较差,较差的原因是什么?

训练集 R2 值测试集 R2 值
0.60.5
0.90.6
0.90.88

【答案】第一个模型欠拟合;第二个模型过拟合;第三个模型适中,为可接受的模型。

【思考 2】以下哪个曲线为欠拟合、过拟合,哪个模型拟合最好?

在这里插入图片描述

【答案】第一个模型欠拟合;第三个模型过拟合;第二个模型拟合较好。

5.2 如何处理欠拟合、过拟合

欠拟合:提高模型复杂度,如增加特征、增加模型最高次幂等等;

过拟合:降低模型复杂度,如减少特征、降低模型最高次幂等等。

七、线性回归模型变种

1. 正则化

1.1 什么是正则化

过拟合还有一个常见的原因,就是模型参数值太大,所以可以通过抑制参数的方式来解决过拟合问题。如下图所示,右图产生了一定程度过拟合,可以通过弱化高次项的系数(但不删除)来降低过拟合。

在这里插入图片描述

例如,可以通过在 θ 3 , θ 4 \theta_3, \theta_4 θ3,θ4的系数上添加一定的系数,来压制这两个高次项的系数,这种方法称为正则化。但在实际问题中,可能有更多的系数,我们并不知道应该压制哪些系数,所以,可以通过收缩所有系数来避免过拟合。

1.2 正则化的定义

正则化是指,在目标函数后面添加一个范数,来防止过拟合的手段,这个范数定义为:

∣ ∣ x ∣ ∣ p = ( ∑ i = 1 N ∣ x ∣ p ) 1 p ||x||_p = (\sum_{i=1}^N |x|^p)^{\frac{1}{p}} ∣∣xp=(i=1Nxp)p1

当 p=1 时,称为 L1 范数(即所有系数绝对值之和):

∣ ∣ x ∣ ∣ 1 = ( ∑ i = 1 N ∣ x ∣ ) ||x||_1 = (\sum_{i=1}^N |x|) ∣∣x1=(i=1Nx)

当 p=2 是,称为 L2 范数(即所有系数平方之和再开方):

∣ ∣ x ∣ ∣ 2 = ( ∑ i = 1 N ∣ x ∣ 2 ) 1 2 ||x||_2 = (\sum_{i=1}^N |x|^2)^{\frac{1}{2}} ∣∣x2=(i=1Nx2)21

通过对目标函数添加正则项,整体上压缩了参数的大小,从而防止过拟合。

2. Lasso 回归与岭回归

Lasso 回归和岭回归(Ridge Regression)都是在标准线性回归的基础上修改了损失函数的回归算法。 Lasso 回归全称为 Least absolute shrinkage and selection operator,又译“最小绝对值收敛和选择算子”、”套索算法”,其损失函数如下所示:

E = 1 n ( ∑ i = 1 N y i − y i ′ ) 2 + λ ∣ ∣ w ∣ ∣ 1 E = \frac{1}{n}(\sum_{i=1}^N y_i - y_i')^2 + \lambda ||w||_1 E=n1(i=1Nyiyi)2+λ∣∣w1

岭回归损失函数为:

E = 1 n ( ∑ i = 1 N y i − y i ′ ) 2 + λ ∣ ∣ w ∣ ∣ 2 E = \frac{1}{n}(\sum_{i=1}^N y_i - y_i')^2 + \lambda ||w||_2 E=n1(i=1Nyiyi)2+λ∣∣w2

从逻辑上说,Lasso 回归和岭回归都可以理解为通过调整损失函数,减小函数的系数,从而避免过于拟合于样本,降低偏差较大的样本的权重和对模型的影响程度。

线性模型变种模型:在损失函数后面 + 正则项

  • 损失函数 + L1 范数 -> Lasso 回归
  • 损失函数 + L2 范数 -> 岭回归

以下关于 Lasso 回归于岭回归的 sklearn 实现:

# Lasso回归和岭回归示例
import numpy as np
# 线性模型
import sklearn.linear_model as lm
# 模型性能评价模块
import sklearn.metrics as sm
import matplotlib.pyplot as mpx, y = [], []  # 输入、输出样本
with open("abnormal.txt", "rt") as f:for line in f.readlines():data = [float(substr) for substr in line.split(",")]x.append(data[:-1])y.append(data[-1])x = np.array(x)  # 二维数据形式的输入矩阵,一行一样本,一列一特征
y = np.array(y)  # 一维数组形式的输出序列,每个元素对应一个输入样本
# print(x)
# print(y)# 创建线性回归器
model = lm.LinearRegression()
# 用已知输入、输出数据集训练回归器
model.fit(x, y)
# 根据训练模型预测输出
pred_y = model.predict(x)# 创建岭回归器并进行训练
# Ridge: 第一个参数为正则强度,该值越大,异常样本权重就越小
model_2 = lm.Ridge(alpha=200, max_iter=1000)  # 创建对象, max_iter为最大迭代次数
model_2.fit(x, y)  # 训练
pred_y2 = model_2.predict(x)  # 预测# lasso回归
model_3 = lm.Lasso(alpha=0.5,  # L1范数相乘的系数max_iter=1000)  # 最大迭代次数
model_3.fit(x, y)  # 训练
pred_y3 = model_3.predict(x)  # 预测# 可视化回归曲线
mp.figure('Linear & Ridge & Lasso', facecolor='lightgray')
mp.title('Linear & Ridge & Lasso', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='dodgerblue', alpha=0.8, s=60, label='Sample')
sorted_idx = x.T[0].argsort()mp.plot(x[sorted_idx], pred_y[sorted_idx], c='orangered', label='Linear')  # 线性回归
mp.plot(x[sorted_idx], pred_y2[sorted_idx], c='limegreen', label='Ridge')  # 岭回归
mp.plot(x[sorted_idx], pred_y3[sorted_idx], c='blue', label='Lasso')  # Lasso回归mp.legend()
mp.show()

以下是执行结果:

在这里插入图片描述

八、模型保存与加载

可以使用 Python 提供的功能对模型对象进行保存。使用方法如下:

import pickle
# 保存模型
pickle.dump(模型对象, 文件对象)
# 加载模型
model_obj = pickle.load(文件对象)

保存训练模型应该在训练完成或评估完成之后,完整代码如下:

# 模型保存示例
import numpy as np
import sklearn.linear_model as lm # 线性模型
import picklex = np.array([[0.5], [0.6], [0.8], [1.1], [1.4]])  # 输入集
y = np.array([5.0, 5.5, 6.0, 6.8, 7.0])  # 输出集# 创建线性回归器
model = lm.LinearRegression()
# 用已知输入、输出数据集训练回归器
model.fit(x, y)print("训练完成.")# 保存训练后的模型
with open('linear_model.pkl', 'wb') as f:pickle.dump(model, f)print("保存模型完成.")

执行完成后,可以看到与源码相同目录下多了一个名称为 linear_model.pkl 的文件,这就是保存的训练模型。使用该模型代码:

# 模型加载示例
import numpy as np
import sklearn.linear_model as lm  # 线性模型
import sklearn.metrics as sm  # 模型性能评价模块
import matplotlib.pyplot as mp
import picklex = np.array([[0.5], [0.6], [0.8], [1.1], [1.4]])  # 输入集
y = np.array([5.0, 5.5, 6.0, 6.8, 7.0])  # 输出集# 加载模型
with open('linear_model.pkl', 'rb') as f:model = pickle.load(f)print("加载模型完成.")# 根据加载的模型预测输出
pred_y = model.predict(x)# 可视化回归曲线
mp.figure('Linear Regression', facecolor='lightgray')
mp.title('Linear Regression', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='blue', alpha=0.8, s=60, label='Sample')mp.plot(x, pred_y, c='orangered', label='Regression')mp.legend()
mp.show()

执行结果和训练模型预测结果一样。

九、总结

1. 什么是线性模型

线性模型是自然界最简单的模型之一,反映自变量、因变量之间的等比例增长关系。

2. 什么时候使用线性回归

线性模型只能用于满足线性分布规律的数据中。

3. 如何实现线性回归

给定一组样本,给定初始的 w 和 b,通过梯度下降法求最优的 w 和 b。

十、补充知识

1. R2 系数详细计算

R2 系数详细计算过程如下:

若用 y i y_i yi表示真实的观测值,用 y ˉ \bar{y} yˉ表示真实观测值的平均值,用 y i ^ \hat{y_i} yi^表示预测值,则有以下评估指标:

回归平方和(SSR)

S S R = ∑ i = 1 n ( y i ^ − y ˉ ) 2 SSR = \sum_{i=1}^{n}(\hat{y_i} - \bar{y})^2 SSR=i=1n(yi^yˉ)2

  • 估计值与平均值的误差,反映自变量与因变量之间的相关程度的偏差平方和。

残差平方和(SSE)

S S E = ∑ i = 1 n ( y i − y i ^ ) 2 SSE = \sum_{i=1}^{n}(y_i-\hat{y_i} )^2 SSE=i=1n(yiyi^)2

  • 即估计值与真实值的误差,反映模型拟合程度。

总离差平方和(SST)

S S T = S S R + S S E = ∑ i = 1 n ( y i − y ˉ ) 2 SST =SSR + SSE= \sum_{i=1}^{n}(y_i - \bar{y})^2 SST=SSR+SSE=i=1n(yiyˉ)2

  • 即平均值与真实值的误差,反映与数学期望的偏离程度.
R2_score 计算公式

R2_score,即决定系数,反映因变量的全部变异能通过回归关系被自变量解释的比例。计算公式:

R 2 = 1 − S S E S S T R^2=1-\frac{SSE}{SST} R2=1SSTSSE

即:

R 2 = 1 − ∑ i = 1 n ( y i − y ^ i ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)2}{\sum_{i=1}{n} (y_i - \bar{y})^2} R2=1i=1n(yiyˉ)2i=1n(yiy^i)2

进一步化简为:

R 2 = 1 − ∑ i ( y i − y i ) 2 / n ∑ i ( y i − y ^ ) 2 / n = 1 − R M S E V a r R^2 = 1 - \frac{\sum\limits_i(y_i - y_i)^2 / n}{\sum\limits_i(y_i - \hat{y})^2 / n} = 1 - \frac{RMSE}{Var} R2=1i(yiy^)2/ni(yiyi)2/n=1VarRMSE

分子就变成了常用的评价指标均方误差 MSE,分母就变成了方差,对于 R 2 R^2 R2可以通俗地理解为使用均值作为误差基准,看预测误差是否大于或者小于均值基准误差。

R2_score = 1,样本中预测值和真实值完全相等,没有任何误差,表示回归分析中自变量对因变量的解释越好。

R2_score = 0,此时分子等于分母,样本的每项预测值都等于均值。

2. 线性回归损失函数求导过程

线性函数定义为:

y = w 0 + w 0 x 1 y = w_0 + w_0 x_1 y=w0+w0x1

采用均方差损失函数:

l o s s = 1 2 ( y − y ′ ) 2 loss = \frac{1}{2} (y - y')^2 loss=21(yy)2

其中,y 为真实值,来自样本;y’为预测值,即线性方程表达式,带入损失函数得:

l o s s = 1 2 ( y − ( w 0 + w 1 x 1 ) ) 2 loss = \frac{1}{2} (y - (w_0 + w_1 x_1))^2 loss=21(y(w0+w1x1))2

将该式子展开:

l o s s = 1 2 ( y 2 − 2 y ( w 0 + w 1 x 1 ) + ( w 0 + w 1 x 1 ) 2 ) = 1 2 ( y 2 − 2 y ∗ w 0 − 2 y ∗ w 1 x 1 + w 0 2 + 2 w 0 ∗ w 1 x 1 + w 1 2 x 1 2 ) loss = \frac{1}{2} (y^2 - 2y(w_0 + w_1 x_1) + (w_0 + w_1 x_1)^2) =\\\frac{1}{2} (y^2 - 2y*w_0 - 2y*w_1x_1 + w_0^2 + 2w_0*w_1 x_1 + w_1^2x_1^2) \\ loss=21(y22y(w0+w1x1)+(w0+w1x1)2)=21(y22yw02yw1x1+w02+2w0w1x1+w12x12)

w 0 w_0 w0求导:

∂ l o s s ∂ w 0 = 1 2 ( 0 − 2 y − 0 + 2 w 0 + 2 w 1 x 1 + 0 ) = 1 2 ( − 2 y + 2 w 0 + 2 w 1 x 1 ) = 1 2 ∗ 2 ( − y + ( w 0 + w 1 x 1 ) ) = ( − y + y ′ ) = − ( y − y ′ ) \frac{\partial loss}{\partial w_0} = \frac{1}{2}(0-2y-0+2w_0 + 2w_1 x_1 +0) \\=\frac{1}{2}(-2y + 2 w_0 + 2w_1 x_1) \\= \frac{1}{2} * 2(-y + (w_0 + w_1 x_1)) \\=(-y + y') = -(y - y') w0loss=21(02y0+2w0+2w1x1+0)=21(2y+2w0+2w1x1)=212(y+(w0+w1x1))=(y+y)=(yy)

w 1 w_1 w1求导:

∂ l o s s ∂ w 1 = 1 2 ( 0 − 0 − 2 y ∗ x 1 + 0 + 2 w 0 x 1 + 2 w 1 x 1 2 ) = 1 2 ( − 2 y x 1 + 2 w 0 x 1 + 2 w 1 x 1 2 ) = 1 2 ∗ 2 x 1 ( − y + w 0 + w 1 x 1 ) = x 1 ( − y + y ′ ) = − x 1 ( y − y ′ ) \frac{\partial loss}{\partial w_1} = \frac{1}{2}(0-0-2y*x_1+0+2 w_0 x_1 + 2 w_1 x_1^2) \\= \frac{1}{2} (-2y x_1 + 2 w_0 x_1 + 2w_1 x_1^2) \\= \frac{1}{2} * 2 x_1(-y + w_0 + w_1 x_1) \\= x_1(-y + y') = - x_1(y - y') w1loss=21(002yx1+0+2w0x1+2w1x12)=21(2yx1+2w0x1+2w1x12)=212x1(y+w0+w1x1)=x1(y+y)=x1(yy)

推导完毕。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/231601.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据安全传输基础设施平台(二)

5安全传输平台总体设计 5.1 方案特点 规范化:严格遵循各种相关规范设计。独立性:系统各子系统间互相独立,在保持系统间接口的前提下,各系统间的升级互不干扰。最小耦合性:各子系统进行严格功能分解,每个子…

PCL点云处理之点云置平(拟合平面绕中心旋转到绝对水平)(二百二十七)

PCL点云处理之点云置平(绕中心旋转到绝对水平)(二百二十七) 一、什么是点云置平二、算法流程三、算法实现一、什么是点云置平 有时候,我们处理的点云平面并非位于水平面,而是位于某个任一三维平面上,而大多数算法又只能在水平面处理,或者水平面的点云处理是相对更简单…

P2P应用

目录 一.P2P的简介 二.P2P的工作方式 1.具有集中目录服务器的P2P工作方式 2.具有全分布式结构的P2P文件共享程序 一.P2P的简介 P2P(对等连接),是指两台主机在通信时,并不区分哪一个是服务请求方和哪一个是服务提供方。只要两台主机都运行了对等连接…

人工智能_机器学习069_SVM支持向量机_网格搜索_交叉验证参数优化_GridSearchCV_找到最优的参数---人工智能工作笔记0109

然后我们再来说一下SVC支持向量机的参数优化,可以看到 这次我们需要,test_data这个是测试数据,容纳后 train_data这个是训练数据 这里首先我们,导出 import numpy as np 导入数学计算包 from sklearn.svm import SVC 导入支持向量机包 分类器包 def read_data(path): wit…

从事开发近20年,经历过各种技术的转变和进步

1、jsp、javabean、servlet、jdbc。 2、Struts1、hibernate、spring。 3、webwork、ibatis、spring 4、Struts2、mybatis、spring 5、spring mvc ,spring全家桶 6、dubbo,disconf 微服务,soa 7、springboot 全家桶 8、docker 9、dock…

AXure的情景交互

目录 导语: 1.erp多样性登录界面 2.主页跳转 3.省级联动​编辑 4. 下拉加载 导语: Axure是一种流行的原型设计工具,可以用来创建网站和应用程序的交互原型。通过Axure,设计师可以创建情景交互,以展示用户与系统的交…

力扣题目学习笔记(OC + Swift) 14. 最长公共前缀

14. 最长公共前缀 编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀,返回空字符串 “”。 方法一 竖向扫描法 个人感觉纵向扫描方式比较直观,符合人类理解方式,从前往后遍历所有字符串的每一列,比较相同列上的…

出国旅游需要注意些什么

出国旅游是一种令人兴奋、令人期待的经历。然而,在进行这种经历之前,有几件事情是需要注意的。本文将为您介绍出国旅游需要注意的一些重要事项。首先,为了确保您的出国旅行顺利进行,您应该提前办理好您的签证和护照。不同国家对于…

Idea远程debugger调试

当我们服务部署在服务器上,我们想要像在本地一样debug,就可以使用idea自带的Remote JVM Debug 创建Remote JVM Debug服务器启动jar打断点进入断点 当我们服务部署在服务器上,我们想要像在本地一样debug,就可以使用idea自带的 Remote JVM Debug) 创建Rem…

flask搞个简单登录界面

登录界面 直接放上login.html模板&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Lo…

JVM-11-运行时栈帧结构

“栈帧”&#xff08;Stack Frame&#xff09;则是用于支持虚拟机进行方法调用和方法执行背后的数据结构&#xff0c;它也是虚拟机运行时数据区中的虚拟机栈&#xff08;Virtual MachineStack&#xff09;的栈元素。 栈帧存储了方法的局部变量表、操作数栈、动态连接和方法返回…

docker在线安装nginx

1、查看所有镜像 1、不带容器卷常规启动nginx&#xff0c;命令如下 docker run --name nginx-test -p 8089:80 -d a6bd71f48f68 2、在宿主机创建/usr/local/data/nginxdocker/目录&#xff0c;在此目录下创建html和logs文件夹&#xff0c;然后将容器内的 nginx.conf 和 html 下…

01-从JDK源码级别彻底剖析JVM类加载机制

文章目录 类加载运行全过程类加载器和双亲委派机制类加载器初始化过程双亲委派机制为什么要设计双亲委派机制&#xff1f;全盘负责委托机制自定义类加载器 打破双亲委派机制Tomcat打破双亲委派机制Tomcat自定义加载器详解模拟实现Tomcat的JasperLoader热加载 补充&#xff1a;H…

AR室内导航如何实现?技术与原理分析

随着科技的进步&#xff0c;我们生活中许多方面正在被重新定义。其中之一就是导航&#xff0c;尤其是室内导航。增强现实&#xff08;AR&#xff09;技术的出现为室内导航带来了革命性的变革。本文将深入探讨AR室内导航的技术与原理&#xff0c;以及它如何改变我们的生活方式。…

数据结构(Chapter Two -02)—顺序表基本操作实现

在前一部分我们了解线性表和顺序表概念&#xff0c;如果有不清楚可以参考下面的博客&#xff1a; 数据结构(Chapter Two -01)—线性表及顺序表-CSDN博客 首先列出线性表的数据结构&#xff1a; #define MaxSize 50 //定义顺序表最大长度 typedef struct{ElemType data…

springboot解决XSS存储型漏洞

springboot解决XSS存储型漏洞 XSS攻击 XSS 攻击&#xff1a;跨站脚本攻击(Cross Site Scripting)&#xff0c;为不和 前端层叠样式表(Cascading Style Sheets)CSS 混淆&#xff0c;故将跨站脚本攻击缩写为 XSS。 XSS(跨站脚本攻击)&#xff1a;是指恶意攻击者往 Web 页面里插…

八.创建和管理表

目录 1. 基础知识1.1 一条数据存储的过程1.2 标识符命名规则1.3 MySQL中的数据类型 2. 创建和管理数据库2.2 使用数据库2.3 修改数据库 3. 创建表3.1 创建方式13.2 创建方式23.4 查看数据表结构 4. 修改表4.1 追加一个列4.2 修改一个列4.3 重命名一个列4.4 删除一个列 5. 重命名…

工作:三菱PLC程序开发流程总结

工作&#xff1a;三菱PLC程序开发流程总结 一、程序流程图 程序流程图是逻辑思维与动作流程的检查图&#xff0c;是保证逻辑思维合理的前提&#xff0c;写代码丢失方向可从程序流程图重新整理&#xff0c;程序流程图非常重要。 二、组态配置 组态配置是将所用到的基板和模块…

React基础巩固日志1

书写了一篇vue3的基础构建之后&#xff0c;不能带着各位一起学习vue3了&#xff0c;因为我要面试上海的前端岗位了&#xff0c;所以从现在开始&#xff0c;我要带着大家一起学习React了。 以下是我使用react书写的要掌握的react的知识点&#xff1a; ** ** 那么下面我们就一一通…

不做数据采集,不碰行业应用,专注数字孪生PaaS平台,飞渡科技三轮融资成功秘诀

12月15日&#xff0c;飞渡科技在北京举行2023年度投资人媒体见面会&#xff0c;全面分享其产品技术理念与融资之路。北京大兴经开区党委书记、管委会主任常学智、大兴经开区副总经理梁萌、北京和聚百川投资管理有限公司&#xff08;以下简称“和聚百川”&#xff09;投资总监严…