P2P应用

目录

一.P2P的简介

二.P2P的工作方式

1.具有集中目录服务器的P2P工作方式

2.具有全分布式结构的P2P文件共享程序


一.P2P的简介

P2P(对等连接),是指两台主机在通信时,并不区分哪一个是服务请求方和哪一个是服务提供方。只要两台主机都运行了对等连接软件(P2P 软件),它们就可以进行平等的对等连接通信。这时,双方都可以下载对方已经存储在硬盘中的共享文档。

如图,主机C,D,E和F都运行了P2P程序,因此这几台主机都可进行对等通信(如 C和D,E和F,以及C和F)。实际上,对等连接方式从本质上看仍然使用客户-服务器方式,只是对等连接中的每一台主机既是客户同时又是服务器。例如主机C,当C请求D的服务时,C 是客户,D 是服务器。但如果C 又同时向F提供服务,那么C又同时起着服务器的作用。

二.P2P的工作方式

1.具有集中目录服务器的P2P工作方式

最早使用P2P工作方式的是Napster。Napster 能够搜索音乐文件,能够提供检索功能。所有音乐文件的索引信息都集中存放在Napster 目录服务器中。这个目录服务器起着索引的作用。使用者只要查找目录服务器,就可知道应从何处下载所要的 MP3文件。

这里的关键就是运行 Napster 的所有用户,都必须及时向 Napster 的目录服务器报告自己已经存有哪些音乐文件。Napster 目录服务器就用这些用户信息建立起一个动态数据库,集中存储了所有用户的音乐文件信息(即对象名和相应的 IP 地址)。当某个用户想下载某个MP3 文件时,就向目录服务器发出查询(这个过程仍是传统的客户-服务器方式),目录服务器检索出结果后向用户返回存放这一文件的计算机 IP 地址,于是这个用户就可以从中选取一个地址下载想要得到的 MP3 文件(这个下载过程就是 P2P 方式)。可以看出,Napster的文件传输是分散的(P2P 方式),但文件的定位则是集中的(客户-服务器方式)。

其工作方式如下图所示:

① 用户X向Napster 目录服务器查询(客户-服务器方式)谁有文件MP3#。

② Napster 目录服务器回答X:有三个地点有文件MP3#,即A,B和C(给出了这三个地点的IP 地址)。于是用户X 得知所需的文件 MP3#的三个下载地点。

③ 用户X可以随机地选择三个地点中的任一个,也可以使用 PING 报文寻找最方便下载的一个。在图中,我们假定X向A发送下载文件 MP3#的请求报文。现在X和A都使用 P2P方式通信,互相成为对等方,X 是临时的客户,而对等方A是临时的服务器。

④ 对等方A(现在作为服务器)把文件MP3#发送给X。
这种集中式目录服务器的最大缺点就是可靠性差,而且会成为其性能的瓶颈(尤其是在用户数非常多的情况下)。

2.具有全分布式结构的P2P文件共享程序

Gnutella是P2P文件共享程序的代表,他是一种采用全分布方法定位内容的P2P文件共享应用程序。Gnutella与Napster 最大的区别就是不使用集中式的目录服务器进行查询,而是使用洪泛济在大量Gnutella 用户之间进行查询。为了不使查询的通信量过大,Gnutella 设计了一种有限范围的洪泛查询。这样可以减少倾注到互联网的查询流量,但由于查询的范围受限,因而这也影响到查询定位的准确性。

现在比较好的查找方法是设法构建一种分布式数据库,以进行对等方及其资源的定位。这种分布式数据库在概念上并不复杂,只要能够支持大量对等方(可能有几百万个)进行索引查找即可。存储在数据库中的信息只有两个部分:
(1)要查找的资源名K(例如,电影或歌曲的名字)。资源名也可称为关键字

(2)存放该对象的节点的IP地址N。有的 IP 地址还附带有端口号。

存放在数据库中的信息就是大量成对出现的(资源名 K,节点的 IP 地址N)。在查找某资源名 K 时,只要在数据库中查找到匹配的资源名 K,数据库就能够返回对应的节点的 IP地址N。所以问题的关键就是要设法把每个资源名 K 存放在一个非常便于查找的地方。现在广泛使用的索引和查找技术叫作分布式散列表DHT(Distributed Hash Table)。基于DHT的具体算法中,广泛使用的是Chord算法。

分布式散列表 DHT 利用散列函数,把资源名K及其存放的节点 IP 地址都分别映为资源名标识符KID和节点标识符 NID。

(1)节点标识符NID按照其标识符值映射到Chord 环上对应的点,就是图中标有NID的小圆点,如N4,N7,N10,N20,N26和N30。
(2)资源名标识符 KID则按照其标识符值映射到与其值最接近的下一个 NID,见图,标有KID的小方块。所谓“最接近的下一个”NID就是指:从 KID 值开始,按顺时针方向沿Chord环遇到的下一个NID。例如,K31和K2应放在N4,因为在环上从31和2按顺时针方向遇到的下一个NID是N4。同理,K8,K12,K23和K29应分别放在N10,N20,N26和N30。如果碰巧同时出现K29和N29(这种概率极小),那么K29就应当放在N29。

注:在图中,K31和K2都放在N4,这表示要查找存放资源 K31或K2的节点的 IP 地址,就应当到节点 N4 去查找。但是,资源 K31和 K2并非存放在节点N4。

每个资源由 Chord 环上与其标识符值最接近的下一个节点提供服务。Chord 环并非实际的网络。在 Chord 环上相邻的节点,在地理上很可能相距非常远。

chord算法原理较复杂,具体可以看:

http://t.csdnimg.cn/28EKD

为了更加有效地在大量用户之间使用 P2P 技术下载共享文件,最近几年已经开发出很多种第三代P2P共享文件程序[KURO17],它们使用分散定位和分散传输技术。如KaZaA,电骡eMule,比特洪流BT(Bit Torrent)等。

BT洪流有两个关键的部分组成:文件块(chunk)和追踪器(tracker)

文件块:BT把对等方下载文件的数据单元称为文件块chunk),一个文件块的长度是固定不变的,例如,典型的数值是 256 KB。当一个新的对等方加入某个洪流时,一开始它并没有文件块。但新的对等方逐渐地能够下载到一些文件块。而与此同时,它也为别的对等方上传一些文件块。某个对等方获得了整个的文件后,可以立即退出这个洪流(相当于自私的用户),也可继续留在这个洪流中,为其他的对等方上传文件块(相当于无私的用户)。加入或退出某个洪流可在任何时间完成(即使在某个文件还没有下载完毕时),也是完全自由的。

追踪器:每一个洪流都有一个基础设施节点,叫作追踪器(tracker)。当一个对等方加入洪流时,必须向追踪器登记(或称为注册),并周期性地通知追踪器它仍在洪流中。追踪器因而就跟踪了洪流中的对等方。一个洪流中可以拥有少到几个多到几百或几千个对等方。

BT洪流的工作原理:

① 当一个新的对等方A 加入洪流时,追踪器就随机地从参与的对等方集合中选择若干个(例如,30个),并把这些对等方的 IP 地址告诉A。于是A就和这些对等方建立了TCP连接。我们称所有与A建立了TCP连接的等方为“相邻对等方”(neighboring peers)。在图中我们在上面的覆盖网络中画出了有三个相邻对等方(B,C和 D)。这些相邻对等方的数目是动态变化的,有的对等方可能不久就离开了,但不久后又有新加入进来的对等方。
② 在任何时刻,每一个对等方可能只拥有某文件的一个文件块子集,而不同的对等方所拥有的文件块子集也不会完全相同。对等方 A 将通过TCP连接周期性地向其相邻对等方索取它们拥有的文件块列表。根据收到的文件块列表,A 就知道了应当请求哪一个相邻对等方把哪些自己缺少的文件块发送过来。

上图是对等方之间互相传送数据块的示意图。例如,A向 B、C和D 索取数据块,但B同时也向 C和 D传送数据块,D和C 还相传送数据块。由于 P2P 对等用户的数量非常多,因此,从不同的对等方获得不同的数据块,然后组装成整个的文件,一般要比仅从一个地方下载整个的文件要快很多。

然而 A 必须做出两个重要决定。第一,哪些文件块是首先需要向其相邻对等方请求的?第二,在很多向A 请求文件块的相邻对等方中,A 应当向哪些相邻对等方发送所请求的文件块?
对于第一个问题,A要使用叫作最稀有的优先(rarest first)的技术。我们知道,凡是A所缺少的而正好相邻对等方已拥有的文件块,都应当去索取。可能其中的某些文件块,很多相邻对等方都有(即文件块的副本很多),这就是“不稀有的”文件块,以后可慢慢请求。如果 A 所缺少的文件块在相邻对等方中的副本很少,那就是“很稀有的”。因此,A 首先应当请求副本最少的文件块(即最稀有的)。否则,一旦拥有最稀有文件块的对等方退出了洪流,就会影响A对所缺文件块的收集。

对于第二个问题,BT采用了一种更加机灵的算法,其基本思想就是:凡当前有以最高数据率向A传送文件块的某相邻对等方,A 就优先把所请求的文件块传送给该相邻对等方

① A持续地测量从其相邻对等方接收数据的速率,并确定速率最高的4个相邻对等方。

② A就把文件块发送给这4个相邻对等方。每隔 10秒钟,A 还要重新计算数据率,然后可能修改这4个对等方。在 BT 的术语中,这4个对方叫作已疏通的或无障碍的(unchoked)对等方。更重要的是,每隔30秒,A要随机地找一个另外的相邻对等方B,并向其发送文件块。这样,A 有可能成为 B 的前4 位上传文件块的提供者。在此情况下,B也有可能向A 发送文件块。如果B 发送文件块的速率足够快,那么B 也有可能进入A的前4位上传文件块的提供者。这样做的结果是,这些对等方相互之间都能够以令人满意的速率交换文件块。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/231598.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人工智能_机器学习069_SVM支持向量机_网格搜索_交叉验证参数优化_GridSearchCV_找到最优的参数---人工智能工作笔记0109

然后我们再来说一下SVC支持向量机的参数优化,可以看到 这次我们需要,test_data这个是测试数据,容纳后 train_data这个是训练数据 这里首先我们,导出 import numpy as np 导入数学计算包 from sklearn.svm import SVC 导入支持向量机包 分类器包 def read_data(path): wit…

ping: unknown host www.baidu.com

您遇到的问题表明系统无法解析 “www.baidu.com” 的域名。这通常与 DNS(域名系统)配置或网络连接问题有关。以下是一些解决步骤: 1. 检查网络连接 首先确保您的系统已连接到互联网。您可以尝试 ping 一些知名的网站或使用 IP 地址来测试连…

从事开发近20年,经历过各种技术的转变和进步

1、jsp、javabean、servlet、jdbc。 2、Struts1、hibernate、spring。 3、webwork、ibatis、spring 4、Struts2、mybatis、spring 5、spring mvc ,spring全家桶 6、dubbo,disconf 微服务,soa 7、springboot 全家桶 8、docker 9、dock…

qt使用事件来进行文件操作

使用键盘进行操作 #include<QKeyEvent> 包含的头文件 在.h文件中添加此函数 void keyPressEvent(QKeyEvent*k); 在.cpp中的实现操作 void MainWindow::keyPressEvent(QKeyEvent*k) {if(k->modifiers()Qt::ControlModifier&&k->key()Qt::Key_S){saveAc…

AXure的情景交互

目录 导语&#xff1a; 1.erp多样性登录界面 2.主页跳转 3.省级联动​编辑 4. 下拉加载 导语&#xff1a; Axure是一种流行的原型设计工具&#xff0c;可以用来创建网站和应用程序的交互原型。通过Axure&#xff0c;设计师可以创建情景交互&#xff0c;以展示用户与系统的交…

力扣题目学习笔记(OC + Swift) 14. 最长公共前缀

14. 最长公共前缀 编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀&#xff0c;返回空字符串 “”。 方法一 竖向扫描法 个人感觉纵向扫描方式比较直观&#xff0c;符合人类理解方式&#xff0c;从前往后遍历所有字符串的每一列&#xff0c;比较相同列上的…

出国旅游需要注意些什么

出国旅游是一种令人兴奋、令人期待的经历。然而&#xff0c;在进行这种经历之前&#xff0c;有几件事情是需要注意的。本文将为您介绍出国旅游需要注意的一些重要事项。首先&#xff0c;为了确保您的出国旅行顺利进行&#xff0c;您应该提前办理好您的签证和护照。不同国家对于…

swing快速入门(十七)

上一篇 Java Swing常见事件和事件监听器 事件 Java Swing中有各种各样的事件&#xff0c;其中一些常见的事件包括&#xff1a; 按钮事件&#xff08;Button Events&#xff09;&#xff1a;与按钮相关的事件&#xff0c;例如点击、释放、进入/离开按钮等。 鼠标事件&#x…

leetCode算法—5. 最长回文子串

给你一个字符串 s&#xff0c;找到 s 中最长的回文子串。如果字符串的反序与原始字符串相同&#xff0c;则该字符串称为回文字符串。 示例 1&#xff1a; 输入&#xff1a;s “babad” 输出&#xff1a;“bab” 解释&#xff1a;“aba” 同样是符合题意的答案。 示例 2&…

4-Docker命令之docker login

1.docker login介绍 docker login命令是用来登录到一个docker镜像仓库,如果没有指定镜像仓库地址,默认为docker hub官方仓库。如果使用docker login命令登录到官方仓库,首先需要在官方仓库注册一个账号 本次为大家演示使用docker login命令登录自己搭建的harbor私有仓库 …

treer:生成目录结构树

一、简介 treer 是一个命令行工具&#xff0c;用于生成目录结构树。 二、安装 注意&#xff1a;treer 的安装需要用到 node.js&#xff0c;安装nvm-window(node版本管理工具)的问题 打开终端输入如下命令&#xff1a; npm install treer -g 三、用法 1. treer -h 打印帮助…

Idea远程debugger调试

当我们服务部署在服务器上&#xff0c;我们想要像在本地一样debug,就可以使用idea自带的Remote JVM Debug 创建Remote JVM Debug服务器启动jar打断点进入断点 当我们服务部署在服务器上&#xff0c;我们想要像在本地一样debug,就可以使用idea自带的 Remote JVM Debug) 创建Rem…

flask搞个简单登录界面

登录界面 直接放上login.html模板&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Lo…

JVM-11-运行时栈帧结构

“栈帧”&#xff08;Stack Frame&#xff09;则是用于支持虚拟机进行方法调用和方法执行背后的数据结构&#xff0c;它也是虚拟机运行时数据区中的虚拟机栈&#xff08;Virtual MachineStack&#xff09;的栈元素。 栈帧存储了方法的局部变量表、操作数栈、动态连接和方法返回…

docker在线安装nginx

1、查看所有镜像 1、不带容器卷常规启动nginx&#xff0c;命令如下 docker run --name nginx-test -p 8089:80 -d a6bd71f48f68 2、在宿主机创建/usr/local/data/nginxdocker/目录&#xff0c;在此目录下创建html和logs文件夹&#xff0c;然后将容器内的 nginx.conf 和 html 下…

JVM参数说明

本文从堆栈内存、回收器GC两方面介绍常见的JVM参数并提供配置示例。 优化堆栈内存 堆栈大小典型配置参数 参数项说明案例-Xmx设置最大堆大小-Xmx3550m&#xff0c;设置JVM最大可用内存为3550 MB-Xms设置JVM初始内存-Xms3550m&#xff0c;设置JVM初始内存为3550 MB。此值建议…

01-从JDK源码级别彻底剖析JVM类加载机制

文章目录 类加载运行全过程类加载器和双亲委派机制类加载器初始化过程双亲委派机制为什么要设计双亲委派机制&#xff1f;全盘负责委托机制自定义类加载器 打破双亲委派机制Tomcat打破双亲委派机制Tomcat自定义加载器详解模拟实现Tomcat的JasperLoader热加载 补充&#xff1a;H…

AR室内导航如何实现?技术与原理分析

随着科技的进步&#xff0c;我们生活中许多方面正在被重新定义。其中之一就是导航&#xff0c;尤其是室内导航。增强现实&#xff08;AR&#xff09;技术的出现为室内导航带来了革命性的变革。本文将深入探讨AR室内导航的技术与原理&#xff0c;以及它如何改变我们的生活方式。…

数据结构(Chapter Two -02)—顺序表基本操作实现

在前一部分我们了解线性表和顺序表概念&#xff0c;如果有不清楚可以参考下面的博客&#xff1a; 数据结构(Chapter Two -01)—线性表及顺序表-CSDN博客 首先列出线性表的数据结构&#xff1a; #define MaxSize 50 //定义顺序表最大长度 typedef struct{ElemType data…

springboot解决XSS存储型漏洞

springboot解决XSS存储型漏洞 XSS攻击 XSS 攻击&#xff1a;跨站脚本攻击(Cross Site Scripting)&#xff0c;为不和 前端层叠样式表(Cascading Style Sheets)CSS 混淆&#xff0c;故将跨站脚本攻击缩写为 XSS。 XSS(跨站脚本攻击)&#xff1a;是指恶意攻击者往 Web 页面里插…