题1:判定是否互为字符重排
给定两个由小写字母组成的字符串 s1
和 s2
,请编写一个程序,确定其中一个字符串的字符重新排列后,能否变成另一个字符串。
输入: s1 = "abc", s2 = "bca"
输出: true
输入: s1 = "abb", s2 = "aab"
输出: false
解题思路:
1.遍历s1,构建哈希表,记录s1中出现的字符且该字符出现的个数
2. 遍历s2,在哈希表中查找s2中的字符是否在s1中出现过
若找到,同时哈希表对应的值大于1,map[s2[i]]--
若找到,同时哈希表对应的值小于1,说明当前这个字符在s2中出现的次数比s1中出现的多,返回false
若找不到,map.find(s2[i])==map.end(),说明当前字符在s1中没有出现过,返回false
源代码如下:
class Solution {
public:bool CheckPermutation(string s1, string s2) {unordered_map<char,int> map;if(s1.size()!=s2.size()) return false;for(int i=0;i<s1.size();i++){map[s1[i]]+=1;//用哈希表保存s1字符中每个字符出现的次数}for(int i=0;i<s2.size();i++){//遍历s2,找哈希表中是否存在s2字符串中的每个字符,且出现次数是否相同if(map.find(s2[i])==map.end()||map[s2[i]]<1){return false;}map[s2[i]]--;}return true;}
};
题2:回文排列
给定一个字符串,编写一个函数判定其是否为某个回文串的排列之一。
回文串是指正反两个方向都一样的单词或短语。排列是指字母的重新排列。
回文串不一定是字典当中的单词。
输入:"tactcoa"
输出:true(排列有"tacocat"、"atcocta",等等)
输入:"aa"
输出:true("aa"本身就是回文串)
解题思路:
判断回文重排,也就是说判断将字符串重排后是否能够组成回文串。
这里我们定义一个sum变量,当前字符第一次出现,则sum+=1
当前字符第二次出现,则sum-=1
将所有字符遍历完后,要组成回文串
那么该字符串里每个字符出现的个数,要么都是两次,例如abba,sum=1+1-1-1=0
要么只有一个字符出现一次,其余字符都必须出现两次,例如:tacocat,sum=1+1+1+1-1-1-1=1
所以跟题1类似,我们需要判断字符出现的个数,从而判断是否是回文重排
源代码如下:
class Solution {
public:bool canPermutePalindrome(string s) {unordered_map<char,int> map;//建立哈希表来保存字符出现的次数int sum=0;//起始总和为0for(int i=0;i<s.size();i++){//在哈希表中找不到,说明是第一次出现,则sum+1//找到后,发现值为-1,说明前面已经有该字符两两配对过了,所以也就是新的一轮了则sum+1if(map.find(s[i])==map.end()||map[s[i]]==-1){map[s[i]]=1;//先给哈希表赋值sum+=map[s[i]];//sum加上当前的值}//剩下的情况就是,当前字符出现过一次,那么出现第二次时,就从sum中-1else{map[s[i]]=-1;sum+=map[s[i]];}}//只有sum=1/sum=0 才能是回文重排return sum==1||sum==0;}
};