【深度学习目标检测】九、基于yolov5的路标识别(python,目标检测)

YOLOv5是目标检测领域一种非常优秀的模型,其具有以下几个优势:

1. 高精度:YOLOv5相比于其前身YOLOv4,在目标检测精度上有了显著的提升。YOLOv5使用了一系列的改进,如更深的网络结构、更多的特征层和更高分辨率的输入图像,以提升精度。

2. 高效性能:YOLOv5在目标检测任务中具有很高的处理速度和实时性。相比于其他目标检测模型,YOLOv5采用了更少的计算量和参数数量,因此它在目标检测任务中具有更快的推理速度。

3. 简单易用:YOLOv5是一个开源项目,源代码公开,并且提供了预训练的模型权重。这使得使用YOLOv5进行目标检测变得非常方便,无需从头开始训练模型,只需进行适当的微调即可。

4. 多平台适用:YOLOv5可以在多种平台上运行,包括PC端、嵌入式设备和移动设备等。这使得YOLOv5可以在各种场景下应用,如自动驾驶、智能安防、人脸识别等。

5. 多功能:YOLOv5可以检测和分类多个不同的目标类别,包括人、车辆、动物等。此外,YOLOv5还可以检测出目标的位置和大小,并提供相应的置信度。

总之,YOLOv5具有高精度、高效性能、简单易用、多平台适用和多功能等优势,使其成为目标检测领域中的一种前沿模型。

参考:【深度学习目标检测】六、基于深度学习的路标识别(python,目标检测,yolov8)

本文介绍了基于Yolov5的路标检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

效果如下图:

一、安装YoloV5

yolov5和yolov8的开发团队相同,安装方法一样。官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

路标检测数据集,检测4种路标:speedlimit,crosswalk,trafficlight,stop。总共877张图,其中训练集701张图、测试集176张图。

示例图片如下:

原始的数据格式为COCO格式,本文提供转换好的yolov5格式数据集,可以直接放入yolov5中训练,数据集地址(yolov5和yolov8的格式一样):路标数据集yolov5格式

三、模型训练

1、数据集配置文件

在ultralytics/ultralytics/cfg/datasets目录下添加roadsign.yaml,添加以下内容(path修改为自己的路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/roadsign/roadsign-yolov8  # 修改为自己的数据路径
train: images/train 
val: images/val  
test: images/val # Classes
names:# 0: normal0: speedlimit  # speedlimit,crosswalk,trafficlight,stop1: crosswalk2: trafficlight3: stop
2、修改模型配置文件

在ultralytics/ultralytics/cfg/models/v5目录下添加yolov5_roadsign.yaml,添加以下内容:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5# Parameters
nc: 4  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 1024]l: [1.00, 1.00, 1024]x: [1.33, 1.25, 1024]# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)]
3、训练模型

使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:

yolo detect train project=deploy name=yolov5_roadsign exist_ok=False optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/v5/yolov5_roadsign.yaml  data=ultralytics/ultralytics/cfg/datasets/roadsign.yaml
4、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=deploy/yolov5_roadsign/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/roadsign.yaml

精度如下图:

四、推理

训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = 'road423.png'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

本教程训练好的权重和推理代码、示例代码连接:推理代码和训练好的权重

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/231348.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

14:00面试,14:05就出来了,问的问题有点变态。。。

从小厂出来,没想到在另一家公司又寄了。 到这家公司开始上班,加班是每天必不可少的,看在钱给的比较多的份上,就不太计较了。没想到12月一纸通知,所有人不准加班,加班费不仅没有了,薪资还要降40…

【Vue2】Component template should contain exactly one root element.

问题描述 [plugin:vite:vue2] Component template should contain exactly one root element. If you are using v-if on multiple elements, use v-else-if to chain them instead.原因分析 这个错误通常是由于 Vue 组件的模板中包含多个根元素导致的。Vue 要求组件模板中只…

HTML基础

目录 1.格式化文本1.1.& nbsp1.2.设置水平分割线粗细为51.3.粗细为5且颜色为 #0033ff1.4.对齐方式1.5.两端对齐代码小结 2.段落2.1.块级标记2.2.那些块级标记不能包含其他块级标记,哪些可以2.3.hr标签如何设置高度2.4.拼音音标注释ruby标记和rt/rp标记2.5.block…

纵横字谜的答案 Crossword Answers

纵横字谜的答案 Crossword Answers - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 翻译后大概是&#xff1a; 有一个 r 行 c 列 (1<r,c<10) 的网格&#xff0c;黑格为 * &#xff0c;每个白格都填有一个字母。如果一个白格的左边相邻位置或者上边相邻位置没有白格&…

三大主流前端框架介绍

在前端项目中&#xff0c;可以借助某些框架&#xff08;如React、Vue、Angular等&#xff09;来实现组件化开发&#xff0c;使代码更容易复用。此时&#xff0c;一个网页不再是由一个个独立的HTML、CSS和JavaScript文件组成&#xff0c;而是按照组件的思想将网页划分成一个个组…

JS的浅拷贝和深拷贝

首先理解什么是浅拷贝和深拷贝&#xff1a; 浅拷贝&#xff1a; 浅拷贝只会复制对象的第一层属性&#xff0c;而不会递归地复制嵌套的对象。浅拷贝仅复制对象的引用&#xff0c;新对象和原始对象仍然共享相同的引用&#xff0c;因此对新对象的修改可能会影响到原始对象。浅拷…

Java小案例-SpringBoot火车票订票购票票务系统

目录 前言 详细资料 源码获取 前言 SpringBoot火车票订票购票票务系统 前端使用技术&#xff1a;HTML5,CSS3、JavaScript、VUE等 后端使用技术&#xff1a;Spring boot&#xff08;SSM&#xff09;等 数据库&#xff1a;Mysql数据库 数据库管理工具&#xff1a;phpstud…

tp8 模型save保存方法 method not exist:think\db\Query->record

1.$schema 有一个字段存在&#xff0c;但是实际表中是缺少这个字段的 2.必填值&#xff0c;没有值

什么是关键词排名蚂蚁SEO

关键词排名是指通过搜索引擎优化&#xff08;SEO&#xff09;技术&#xff0c;将特定的关键词与网站相关联&#xff0c;从而提高网站在搜索引擎中的排名。关键词排名对于网站的流量和用户转化率具有至关重要的影响&#xff0c;因此它是SEO工作中最核心的部分之一。 如何联系蚂…

二叉树的最大深度(LeetCode 104)

文章目录 1.问题描述2.难度等级3.热门指数4.解题思路方法一&#xff1a;深度优先搜索GolangC 方法二&#xff1a;广度优先搜索GolangC 参考文献 1.问题描述 给定一个二叉树 root &#xff0c;返回其最大深度。 叉树的「最大深度」是指从根节点到最远叶子节点的最长路径上的节…

【SpringMVC】SpringMVC简介、过程分析、bean的加载和控制

文章目录 1. SpringMVC简介2. SpringMVC入门案例文件结构第一步&#xff1a;坐标导入第二步&#xff1a;创建SpringMVC容器的控制器类第三步&#xff1a;初始化SpringMVC环境&#xff0c;设定Spring加载对应的bean第四步&#xff1a;初始化Servlet容器&#xff0c;加载SpringMV…

Leetcode sql50基础题最后的4题啦

算是结束了这个阶段了&#xff0c;之后的怎么学习mysql的方向还没确定&#xff0c;但是不能断掉&#xff0c;而且路是边走边想出来的。我无语了写完了我点进去看详情都不让&#xff0c;还得重新开启计划&#xff0c;那我之前的题解不都没有了&#xff01;&#xff01; 1.第二高…

软件测试的魅力何在?为什么很多人选择测试一行而不做开发?

术有专攻&#xff0c;开发和测试都有自己的技术栈领域&#xff0c;谁也代替不了谁。 接下来我就首先说说本人为什么不做开发&#xff0c;而是选择了测试&#xff1b;其次再谈谈测试的魅力。 问题1&#xff1a;为什么选择测试一行而不做开发&#xff1f; 个人工作12年&#xf…

《一书读懂物联网》前言

我们对知识的认知是有规律可循的&#xff0c;大都是从问题开始&#xff0c;对问题的界定、归纳等都是为解决知识增长或进化而服务的&#xff0c;正如波普尔知识进化图&#xff08;见图 i-1&#xff09;所示的那样。 科学始于问题&#xff0c;发现问题是科学知识增长的起点&…

【C++】POCO学习总结(十九):哈希、URL、UUID、配置文件、日志配置、动态库加载

【C】郭老二博文之&#xff1a;C目录 1、哈希 1.1 说明 std::map和std::set 的性能是&#xff1a;O(log n) POCO哈希的性能比STL容器更好&#xff0c;大约快两&#xff1b; POCO中对应std::map的是&#xff1a;Poco::HashMap&#xff1b; POCO中对应std::set的是 Poco::Hash…

k8s-ingress 8

ExternalName类型 当集群外的资源往集群内迁移时&#xff0c;地址并不稳定&#xff0c;访问域名或者访问方式等会产生变化&#xff1b; 使用svc的方式来做可以保证不会改变&#xff1a;内部直接访问svc&#xff1b;外部会在dns上加上解析&#xff0c;以确保访问到外部地址。 …

AUTOSAR StbM模块的配置以及代码实现

AUTOSAR StbM模块的配置以及代码实现 1、AUTOSAR配置 2、StbM_Init 初始化各个变量。 3、StbM_MainFunction StbM_Rb_IsSyncTimeBase 同步的TimeBase的id范围是0-15 StbM_Rb_IsOffsetTimeBase offset的TimeBase的id范围是16-31 StbM_Rb_IsPureLocalTimeBase pure的Time…

接口自动化测试框架【AIM】

最近在做公司项目的自动化接口测试&#xff0c;在现有几个小框架的基础上&#xff0c;反复研究和实践&#xff0c;搭建了新的测试框架。利用业余时间&#xff0c;把框架总结了下来。 AIM框架介绍 AIM&#xff0c;是Automatic Interface Monitoring的简称&#xff0c;即自动化…

xv6 文件系统(下)

〇、前言 计算机崩溃后如何恢复&#xff0c;是一个很重要的话题。对于内存中的数据无关痛痒&#xff0c;开机后重新载入就能解决问题&#xff1b;但是对于持久化存储设备&#xff0c;当你尝试修改一个文件&#xff0c;突然断电当你重新打开文件后&#xff0c;这个文件的状态是…

基于VUE3+Layui从头搭建通用后台管理系统(前端篇)十五:基础数据模块相关功能实现

一、本章内容 本章使用已实现的公共组件实现系统管理中的基础数据中的验证码管理、消息管理等功能。 1. 详细课程地址: 待发布 2. 源码下载地址: 待发布 二、界面预览 三、开发视频 3.1 B站视频地址: 基于VUE3+Layui从头搭建通用后台管理系统合集-验证码功能实现 3.2 西瓜…