目录
- 1 从 Lagrange 函数引入对偶问题
- 2. 强对偶性与 KKT 条件
- 3. 对偶性的鞍点特征
1 从 Lagrange 函数引入对偶问题
考虑如下优化问题 { min f 0 ( x ) s . t f i ( x ) ≤ 0 , i = 1 , ⋯ , p , h j ( x ) = 0 , j = 1 , ⋯ , q , x ∈ Ω , \begin{align} \begin{cases}\min f_0(x)\\\mathrm{s.t}\quad f_i(x)\leq0,\quad i=1,\cdots,p,\\h_j(x)=0,\quad j=1,\cdots,q,\\x\in\Omega,\end{cases}\end{align} ⎩ ⎨ ⎧minf0(x)s.tfi(x)≤0,i=1,⋯,p,hj(x)=0,j=1,⋯,q,x∈Ω,其中 { f i } i = 0 p , { h j } j = 1 q \{f_i\}_{i=0}^p,\:\{h_j\}_{j=1}^q {fi}i=0p,{hj}j=1q 均为定义在 R n \mathbb{R}^n Rn 取值于 R ‾ \overline{\mathbb{R}} R 上的函数, Ω ⊂ R n \Omega\subset\mathbb{R}^n Ω⊂Rn. 设可行集 D : = { x ∈ Ω ∣ f i ( x ) ≤ 0 , i = 1 , ⋯ , p ; h j ( x ) = 0 , j = 1 , ⋯ , q } \mathcal{D}:=\{x\in\Omega|f_i(x)\leq0,~i=1,\cdots,p;~h_j(x)=0,j=1,\cdots,q\} D:={x∈Ω∣fi(x)≤0, i=1,⋯,p; hj(x)=0,j=1,⋯,q}满足如下条件(该条件是为了后面定义的拉格朗日函数) { − ∞ < f i ( x ) ≤ ∞ i = 0 , 1 , ⋯ , p , − ∞ < h j ( x ) < ∞ j = 1 , ⋯ , q , ∀ x ∈ Ω . \begin{align}\begin{cases}-\infty<f_i(x)\leq\infty&i=0,1,\cdots,p,\\-\infty<h_j(x)<\infty&j=1,\cdots,q,\end{cases}\quad\forall x\in\Omega.\end{align} {−∞<fi(x)≤∞−∞<hj(x)<∞i=0,1,⋯,p,j=1,⋯,q,∀x∈Ω.该问题的 Lagrange 函数定义为
L ( x , λ , μ ) : = f 0 ( x ) + ∑ i = 1 p λ i f i ( x ) + ∑ j = 1 q μ j h j ( x ) , ( x , λ , μ ) ∈ Ω × R + p × R q , \begin{aligned}L(x,\lambda,\mu)&:=f_0(x)+\sum_{i=1}^p\lambda_if_i(x)+\sum_{j=1}^q\mu_jh_j(x),\quad(x,\lambda,\mu)\in\Omega\times\mathbb{R}_+^p\times\mathbb{R}^q,\end{aligned} L(x,λ,μ):=f0(x)+i=1∑pλifi(x)+j=1∑qμjhj(x),(x,λ,μ)∈Ω×R+p×Rq,
其中 λ : = ( λ 1 , . . . , λ p ) T , μ : = ( μ 1 , . . . , μ q ) T . \begin{aligned}\lambda&:=(\lambda_1,...,\lambda_p)^T,\quad\mu:=(\mu_1,...,\mu_q)^T.\end{aligned} λ:=(λ1,...,λp)T,μ:=(μ1,...,μq)T.
从正则化的角度来看 Lagrange 函数可以发现 Lagrange 乘子 { λ i } i = 1 p \{\lambda_i\}_{i=1}^p {λi}i=1p 和 { μ j } j = 1 q \{\mu_j\}_{j=1}^q {μj}j=1q 充当了惩罚项的作用:对任意给定的 x ∈ Ω x\in\Omega x∈Ω 和 1 ≤ i ≤ p 1\leq i\leq p 1≤i≤p, 如果 f i ( x ) > 0 , f_i( x) > 0, fi(x)>0,那么 L ( x , λ , μ ) → L( x, \lambda, \mu) \to L(x,λ,μ)→ ∞ ( λ i → ∞ ) \infty~(\lambda_i\to\infty) ∞ (λi→∞).类似地,对任意 1 ≤ j ≤ q 1\leq j\leq q 1≤j≤q,如果 h j ( x ) ≠ 0 h_j(x)\neq0 hj(x)=0, 也有 L ( x , λ , μ ) → ∞ ( μ j → L(x,\lambda,\mu)\to\infty~(\mu_j\to L(x,λ,μ)→∞ (μj→ ∞ \infty ∞或 − ∞ ) -\infty) −∞).
所以根据 (2) 有 sup λ ⪰ 0 , μ L ( x , λ , μ ) = { f 0 ( x ) x ∈ D , ∞ x ∈ Ω ∖ D , \begin{align} &&\sup\limits_{\lambda\succeq0,\mu}L(x,\lambda,\mu)=\begin{cases}f_0(x)&x\in\mathcal{D},\\\infty&x\in\Omega\setminus\mathcal{D},\end{cases}& \end{align} λ⪰0,μsupL(x,λ,μ)={f0(x)∞x∈D,x∈Ω∖D,
从而
ξ ∗ : = inf x ∈ D f 0 ( x ) = inf x ∈ Ω sup λ ⪰ 0 , μ L ( x , λ , μ ) . \begin{aligned}\xi^{*}:=\inf_{x\in\mathcal{D}}f_{0}(x)=\inf_{x\in\Omega}\sup_{\lambda\succeq0,\mu}L(x,\lambda,\mu). \end{aligned} ξ∗:=x∈Dinff0(x)=x∈Ωinfλ⪰0,μsupL(x,λ,μ).
根据上确界和下确界的性质有:
sup λ ⪰ 0 , μ inf x ∈ Ω L ( x , λ , μ ) ≤ inf x ∈ Ω sup λ ⪰ 0 , μ L ( x , λ , μ ) . \begin{align}\sup_{\lambda\succeq0,\mu}\inf_{x\in\Omega}L(x,\lambda,\mu)\leq\inf_{x\in\Omega}\sup_{\lambda\succeq0,\mu}L(x,\lambda,\mu).\end{align} λ⪰0,μsupx∈ΩinfL(x,λ,μ)≤x∈Ωinfλ⪰0,μsupL(x,λ,μ).记 η ∗ : = sup λ ⪰ 0 , μ g ( λ , μ ) , \begin{aligned}\eta^*:=\sup_{\lambda\succeq0,\mu}g(\lambda,\mu),\end{aligned} η∗:=λ⪰0,μsupg(λ,μ),其中 g ( λ , μ ) : = inf x ∈ Ω L ( x , λ , μ ) , ( λ , μ ) ∈ R + p × R q . \begin{align}g(\lambda,\mu):=\inf_{x\in\Omega}L(x,\lambda,\mu),\quad(\lambda,\mu)\in\mathbb{R}_+^p\times\mathbb{R}^q.\end{align} g(λ,μ):=x∈ΩinfL(x,λ,μ),(λ,μ)∈R+p×Rq.则有
η ∗ = sup λ ⪰ 0 , μ g ( λ , μ ) ≤ inf x ∈ D f 0 ( x ) = ξ ∗ . \begin{aligned}\eta^*=\sup_{\lambda\succeq0,\mu}g(\lambda,\mu)\leq\inf_{x\in\mathcal{D}}f_0(x)=\xi^*.\end{aligned} η∗=λ⪰0,μsupg(λ,μ)≤x∈Dinff0(x)=ξ∗.上式给出了优化问题 (1)的最优值 ξ ∗ \xi^* ξ∗ 的一个下界,这个下界可以通过求解如下优化问题而得到 { max g ( λ , μ ) , s . t λ ⪰ 0 \begin{align}\begin{cases}\max g(\lambda,\mu),\\\mathrm{s.t}\quad\lambda\succeq0&\end{cases}\end{align} {maxg(λ,μ),s.tλ⪰0
定义 1.1.1 (对偶函数,对偶问题,对偶性) 我们称(6)为(1)的对偶问题,相对地, 称(1)为原问题. (5)所定义的函数 g ( λ , μ ) g(\lambda,\mu) g(λ,μ) 称为 Lagrange 对偶函数,简称为对偶函数,向量 λ , μ \lambda,\mu λ,μ 称为对偶变量. 不等式(4), 即 η ∗ ≤ ξ ∗ \eta^*\leq\xi^* η∗≤ξ∗, 称为问题 (1)的弱对偶性. 若等式 η ∗ = ξ ∗ \eta^*=\xi^* η∗=ξ∗ 成立,则称问题 (1)满足强对偶性.
命题 1.1.1 (对偶问题是凸的) 由(5)所定义的对偶函数 g g g 是 R + p × R q \mathbb{R}_+^p\times\mathbb{R}^q R+p×Rq 上上半连续的凹函数.
证.对任意固定的 x ∈ R n x\in\mathbb{R}^n x∈Rn,易见 L ( x , λ , μ ) L(x,\lambda,\mu) L(x,λ,μ) 是 λ , μ \lambda,\mu λ,μ 的仿射函数,因而 g ( λ , μ ) g(\lambda,\mu) g(λ,μ) 是仿射函数的逐点下确界,所以是 R + p × R q \mathbb{R}_+^p\times\mathbb{R}^q R+p×Rq 上凹函数.(这是因为有命题:凸函数是仿射函数的逐点上确界)
设 ( λ k , μ k ) ∈ R + p × R q (\lambda_k,\mu_k)\in\mathbb{R}_+^p\times\mathbb{R}^q (λk,μk)∈R+p×Rq 满足 ( λ k , μ k ) → ( λ 0 , μ 0 ) ∈ R + p × R q (\lambda_k,\mu_k)\to(\lambda_0,\mu_0)\in\mathbb{R}_+^p\times\mathbb{R}^q (λk,μk)→(λ0,μ0)∈R+p×Rq,那么, ∀ x ∈ Ω \forall x\in\Omega ∀x∈Ω, 有 g ( λ k , μ k ) ≤ L ( x , λ k , μ k ) \begin{aligned}g(\lambda_k,\mu_k)\le L(x,\lambda_k,\mu_k)\end{aligned} g(λk,μk)≤L(x,λk,μk)从而
lim k → ∞ g ( λ k , μ k ) ≤ lim ‾ k → ∞ L ( x , λ k , μ k ) = L ( x , λ 0 , μ 0 ) \begin{aligned}\lim_{k\to\infty}g(\lambda_k,\mu_k)\le\overline{\lim}_{k\to\infty}L(x,\lambda_k,\mu_k)=L(x,\lambda_0,\mu_0)\end{aligned} k→∞limg(λk,μk)≤limk→∞L(x,λk,μk)=L(x,λ0,μ0)由 x x x 的任意性, 两边对 x ∈ Ω x ∈ Ω x∈Ω 求下确界, 得 l i m ‾ k → ∞ g ( λ k , μ k ) ≤ g ( λ 0 , μ 0 ) . \operatorname*{\overline{lim}}_{k\to\infty}g(\lambda_k,\mu_k)\leq g(\lambda_0,\mu_0). k→∞limg(λk,μk)≤g(λ0,μ0).所以 g g g是上半连续的.
注:当
− ∞ < f i ( x ) , h j ( x ) < ∞ , ∀ x ∈ Ω , i = 1 , . . . , p ; j = 1 , . . . , q \begin{align} -\infty<f_i(x),h_j(x)<\infty,\quad\forall x\in\Omega,\quad i=1,...,p;\quad j=1,...,q\end{align} −∞<fi(x),hj(x)<∞,∀x∈Ω,i=1,...,p;j=1,...,q时,Lagrange 函数 L ( x , λ , μ ) L(x,\lambda,\mu) L(x,λ,μ) 对所有 ( x , λ , μ ) ∈ Ω × R p × R q (x,\lambda,\mu)\in\Omega\times\mathbb{R}^p\times\mathbb{R}^q (x,λ,μ)∈Ω×Rp×Rq 有定义,且对偶函数 g ( λ , μ ) : = inf x ∈ Ω L ( x , λ , μ ) g(\lambda,\mu):=\inf_{x\in\Omega}L(x,\lambda,\mu) g(λ,μ):=x∈ΩinfL(x,λ,μ)对所有 ( λ , μ ) ∈ R p × R q (\lambda,\mu)\in\mathbb{R}^p\times\mathbb{R}^q (λ,μ)∈Rp×Rq 有定义. 考察命题 1.1.1的证明可知,此时 g g g 是定义在 R p × R q \mathbb{R}^p\times\mathbb{R}^q Rp×Rq的上凹函数.
2. 强对偶性与 KKT 条件
对偶问题可以提供原问题重要的信息. 如上所述, 优化问题(1)恒满足弱对偶性. 它说明对偶问题的最优值 η ∗ η^∗ η∗ 是原问题的最优值 ξ ∗ ξ^∗ ξ∗ 的一个下界. 实际上在强对偶条件下, 原问题与对偶问题的解满足
一个与 KKT 条件类似但更一般的条件, 它无需目标函数和约束函数的可微性以及点 x ∗ x^∗ x∗的正则性. 当这些函数可微时, 它可以导出 KKT 条件. 从这个视角导出 KKT 条件使得对 Lagrange 乘子有更好的了解, 它们实际上是对偶问题的解.
命题 2.1 设优化问题(1)满足(2), ( x ∗ , λ ∗ , μ ∗ ) ∈ D × R + p × R q (x^*,\lambda^*,\mu^*)\in\mathcal{D}\times\mathbb{R}_+^p\times\mathbb{R}^q (x∗,λ∗,μ∗)∈D×R+p×Rq. 那么
ξ ∗ = η ∗ , f 0 ( x ∗ ) = ξ ∗ , g ( λ ∗ , μ ∗ ) = η ∗ , \begin{align} \xi^*=\eta^*,\quad f_0(x^*)=\xi^*,\quad g(\lambda^*,\mu^*)=\eta^*,\end{align} ξ∗=η∗,f0(x∗)=ξ∗,g(λ∗,μ∗)=η∗,等价于 λ i ∗ f i ( x ∗ ) = 0 , i = 1 , ⋯ , p ; L ( x ∗ , λ ∗ , μ ∗ ) = inf x ∈ Ω L ( x , λ ∗ , μ ∗ ) . \begin{align} \lambda_i^*f_i(x^*)=0,\quad i=1,\cdots,p;\quad L(x^*,\lambda^*,\mu^*)=\inf_{x\in\Omega}L(x,\lambda^*,\mu^*).\end{align} λi∗fi(x∗)=0,i=1,⋯,p;L(x∗,λ∗,μ∗)=x∈ΩinfL(x,λ∗,μ∗).此外,上述任一条成立时,有 L ( x ∗ , λ ∗ , μ ∗ ) = ξ ∗ = η ∗ L(x^*,\lambda^*,\mu^*)=\xi^*=\eta^* L(x∗,λ∗,μ∗)=ξ∗=η∗, 且若还存在 x ∈ Ω x\in\Omega x∈Ω 使得 f 0 ( x ) < ∞ , f i ( x ) < ∞ , − ∞ < h j ( x ) < ∞ , f_0(x)<\infty,\quad f_i(x)<\infty,\quad-\infty<h_j(x)<\infty, f0(x)<∞,fi(x)<∞,−∞<hj(x)<∞,则 ξ ∗ < ∞ . \xi^*<\infty. ξ∗<∞.
证. 设(9)成立,则 inf x ∈ D f 0 ( x ) = ξ ∗ ≤ f 0 ( x ∗ ) = L ( x ∗ , λ ∗ , μ ∗ ) = inf x ∈ Ω L ( x , λ ∗ , μ ∗ ) = g ( λ ∗ , μ ∗ ) ≤ η ∗ ≤ ξ ∗ . \begin{align}\inf_{x\in\mathcal{D}}f_{0}(x)= \xi^*\leq f_0(x^*)=L(x^*,\lambda^*,\mu^*)=\inf_{x\in\Omega}L(x,\lambda^*,\mu^*)=g(\lambda^*,\mu^*)\leq\eta^*\leq\xi^*.\end{align} x∈Dinff0(x)=ξ∗≤f0(x∗)=L(x∗,λ∗,μ∗)=x∈ΩinfL(x,λ∗,μ∗)=g(λ∗,μ∗)≤η∗≤ξ∗.所以,(8)成立.
反之,设(8)成立,则 ξ ∗ = f 0 ( x ∗ ) ≥ L ( x ∗ , λ ∗ , μ ∗ ) ≥ inf x ∈ Ω L ( x , λ ∗ , μ ∗ ) = g ( λ ∗ , μ ∗ ) = η ∗ = ξ ∗ . \xi^*=f_0(x^*)\geq L(x^*,\lambda^*,\mu^*)\geq\inf_{x\in\Omega}L(x,\lambda^*,\mu^*)=g(\lambda^*,\mu^*)=\eta^*=\xi^*. ξ∗=f0(x∗)≥L(x∗,λ∗,μ∗)≥x∈ΩinfL(x,λ∗,μ∗)=g(λ∗,μ∗)=η∗=ξ∗.所以 f 0 ( x ∗ ) = L ( x ∗ , λ ∗ , μ ∗ ) = g ( λ ∗ , μ ∗ ) f_0(x^*)=L(x^*,\lambda^*,\mu^*)=g(\lambda^*,\mu^*) f0(x∗)=L(x∗,λ∗,μ∗)=g(λ∗,μ∗).第一个等号是(8)给出的条件,以及由 λ ∗ ⪰ 0 , x ∗ ∈ D \lambda^*\succeq0,\quad x^*\in\mathcal{D} λ∗⪰0,x∗∈D 可以推导出 (9)的第一式;第二个等号即为(9) 的第二式.
上述条件成立时,有(10)成立,因而 L ( x ∗ , λ ∗ , μ ∗ ) = ξ ∗ = η ∗ L(x^*,\lambda^*,\mu^*)=\xi^*=\eta^* L(x∗,λ∗,μ∗)=ξ∗=η∗. 若还存在 x ∈ Ω x\in\Omega x∈Ω 使得
(9)成立,则利用(8)有, ξ ∗ = L ( x ∗ , λ ∗ , μ ∗ ) ≤ L ( x , λ ∗ , μ ∗ ) < ∞ . \xi^*=L(x^*,\lambda^*,\mu^*)\leq L(x,\lambda^*,\mu^*)<\infty. ξ∗=L(x∗,λ∗,μ∗)≤L(x,λ∗,μ∗)<∞. 我们称条件 x ∗ ∈ D x^*\in\mathcal{D} x∗∈D 为优化问题(1)的可行条件,而称条件(9)为其对偶可行条件,它的关键作用可以从不等式(10)中看出,它确保了强对偶性以及原问题与对偶问题的可解性. 特别,(9)的第一式 “ λ i ∗ f i ( x ∗ ) = 0 , i = 1 , ⋯ , p ∗ \lambda_i^*f_i(x^*)=0,\quad i=1,\cdots,p^* λi∗fi(x∗)=0,i=1,⋯,p∗ 被称为互补松弛条件.
命题 2.2 (强对偶性等价于 KKT 条件) 设优化问题(1)满足(2), ( x ∗ , λ ∗ , μ ∗ ) ∈ (x^*,\lambda^*,\mu^*)\in (x∗,λ∗,μ∗)∈ R n × R p × R q \mathbb{R}^n\times\mathbb{R}^p\times\mathbb{R}^q Rn×Rp×Rq.那么, x ∗ x^* x∗ 和 ( λ ∗ , μ ∗ ) (\lambda^*,\mu^*) (λ∗,μ∗) 分别是原问题(1)以及对偶问题(6)的解且满足强对偶性 ξ ∗ = η ∗ \xi^*=\eta^* ξ∗=η∗ 当且仅当 { x ∗ ∈ D , λ i ∗ ≥ 0 , i = 1 , ⋯ , p ; λ i ∗ f i ( x ∗ ) = 0 , i = 1 , ⋯ , p ; L ( x ∗ , λ ∗ , μ ∗ ) = inf x ∈ Ω L ( x , λ ∗ , μ ∗ ) . \begin{align} \begin{cases}x^*\in\mathcal{D},\\\lambda_i^*\geq0,\quad i=1,\cdots,p;\\\lambda_i^*f_i(x^*)=0,\quad i=1,\cdots,p;\\L(x^*,\lambda^*,\mu^*)=\inf_{x\in\Omega}L(x,\lambda^*,\mu^*).\end{cases}\end{align} ⎩ ⎨ ⎧x∗∈D,λi∗≥0,i=1,⋯,p;λi∗fi(x∗)=0,i=1,⋯,p;L(x∗,λ∗,μ∗)=infx∈ΩL(x,λ∗,μ∗).证. 必要性. x ∗ x^* x∗ 是原问题(1)的解,按照定义可以推出 x ∗ ∈ D x^*\in\mathcal{D} x∗∈D 且 f 0 ( x ∗ ) = ξ ∗ ; ( λ ∗ , μ ∗ ) f_0(x^*)=\xi^*;(\lambda^*,\mu^*) f0(x∗)=ξ∗;(λ∗,μ∗) 是对偶问题(6)的解,同样地按照定义可以推出 λ ∗ ⪰ 0 \lambda^*\succeq0 λ∗⪰0 且 g ( λ ∗ , μ ∗ ) = η ∗ ; g(\lambda^*,\mu^*)=\eta^*; g(λ∗,μ∗)=η∗; 又由于 ξ ∗ = η ∗ \xi^*=\eta^* ξ∗=η∗, 所以 ( x ∗ , λ ∗ , μ ∗ ) ∈ (x^*,\lambda^*,\mu^*)\in (x∗,λ∗,μ∗)∈ D × R + p × R q \mathcal{D}\times\mathbb{R}_+^p\times\mathbb{R}^q D×R+p×Rq 且(8)成立. 显然 x ∗ ∈ D x^*\in\mathcal{D} x∗∈D 即为 (11)的第一式成立; λ ∗ ∈ R + p \lambda^*\in\mathbb{R}_+^p λ∗∈R+p 蕴含(11)的第二行成立;根据 命题 2.1 可知, ξ ∗ = η ∗ , f 0 ( x ∗ ) = ξ ∗ , g ( λ ∗ , μ ∗ ) = η ∗ , \xi^*=\eta^*,\quad f_0(x^*)=\xi^*,\quad g(\lambda^*,\mu^*)=\eta^*, ξ∗=η∗,f0(x∗)=ξ∗,g(λ∗,μ∗)=η∗, 等价于 λ i ∗ f i ( x ∗ ) = 0 , i = 1 , ⋯ , p ; L ( x ∗ , λ ∗ , μ ∗ ) = inf x ∈ Ω L ( x , λ ∗ , μ ∗ ) . \lambda_i^*f_i(x^*)=0,\quad i=1,\cdots,p;\quad L(x^*,\lambda^*,\mu^*)=\inf_{x\in\Omega}L(x,\lambda^*,\mu^*). λi∗fi(x∗)=0,i=1,⋯,p;L(x∗,λ∗,μ∗)=infx∈ΩL(x,λ∗,μ∗).,即(11)的最后两行成立.
充分性. 设(11)也就是KKT条件成立,显然由KKT条件的前两行可以推出 ( x ∗ , λ ∗ , μ ∗ ) ∈ D × R + p × R q (x^*,\lambda^*,\mu^*)\in\mathcal{D}\times\mathbb{R}_+^p\times\mathbb{R}^q (x∗,λ∗,μ∗)∈D×R+p×Rq,而KKT条件的后两行即为(9). 由命题 2.1知 (8)与(9)等价,从而有(9)的条件 ξ ∗ = η ∗ , f 0 ( x ∗ ) = ξ ∗ , g ( λ ∗ , μ ∗ ) = η ∗ \xi^*=\eta^*,\quad f_0(x^*)=\xi^*,\quad g(\lambda^*,\mu^*)=\eta^* ξ∗=η∗,f0(x∗)=ξ∗,g(λ∗,μ∗)=η∗ 成立.
注:当满足KKT条件(或者说满足强对偶性时),条件 L ( x ∗ , λ ∗ , μ ∗ ) = inf x ∈ Ω L ( x , λ ∗ , μ ∗ ) L(x^*,\lambda^*,\mu^*)=\inf_{x\in\Omega}L(x,\lambda^*,\mu^*) L(x∗,λ∗,μ∗)=infx∈ΩL(x,λ∗,μ∗) 可以写成 L ( x ∗ , λ ∗ , μ ∗ ) = g ( λ ∗ , μ ∗ ) . L(x^*,\lambda^*,\mu^*)=g(\lambda^*,\mu^*). L(x∗,λ∗,μ∗)=g(λ∗,μ∗).
推论 2.3 设优化问题(1)满足 ( 2 ) , ( λ ∗ , μ ∗ ) ∈ R p × R q , x ∗ ∈ r i ( Ω ) (2),\quad(\lambda^*,\mu^*)\in\mathbb{R}^p\times\mathbb{R}^q,\quad x^*\in\mathbf{ri}(\Omega) (2),(λ∗,μ∗)∈Rp×Rq,x∗∈ri(Ω),且 { f i } i = 0 p \{f_i\}_{i=0}^p {fi}i=0p 和 { h j } j = 1 q \{h_j\}_{j=1}^q {hj}j=1q 均在 x ∗ x^* x∗ 处可微,那么,
L ( x ∗ , λ ∗ , μ ∗ ) = inf x ∈ Ω L ( x , λ ∗ , μ ∗ ) \begin{align} L(x^*,\lambda^*,\mu^*)=\inf_{x\in\Omega}L(x,\lambda^*,\mu^*)\end{align} L(x∗,λ∗,μ∗)=x∈ΩinfL(x,λ∗,μ∗)蕴含 ∇ x L ( x ∗ , λ ∗ , μ ∗ ) ⊥ V Ω . \begin{align}\nabla_xL(x^*,\lambda^*,\mu^*)\perp V_\Omega.\end{align} ∇xL(x∗,λ∗,μ∗)⊥VΩ.并且当优化问题(1)是凸问题时,二者等价.
证. 由于 x ∗ ∈ r i ( Ω ) x^*\in\mathbf{ri}(\Omega) x∗∈ri(Ω), 利用优化问题笔记中的 命题 1.2.1 可知 (12)能够推导出(13). 特别地当优化问题(1)是凸问题时,由于 L ( x , λ ∗ , μ ∗ ) L(x,\lambda^*,\mu^*) L(x,λ∗,μ∗) 关于 x x x 为凸函数,由优化问题笔记中的命题 3.1.2 可知 x ∗ x^* x∗ 是 ( f , D ) (f,\mathcal{D}) (f,D) 的一个全局最优解当且仅当 ∇ f ( x ∗ ) T ( x − x ∗ ) ≥ 0 , ∀ x ∈ D \nabla f(x^*)^T(x-x^*)\ge0,\quad\forall x\in\mathcal{D} ∇f(x∗)T(x−x∗)≥0,∀x∈D,(12)等价于
∇ x L ( x ∗ , λ ∗ , μ ∗ ) T ( x − x ∗ ) ≥ 0 , ∀ x ∈ Ω . \nabla_xL(x^*,\lambda^*,\mu^*)^T(x-x^*)\geq0,\quad\forall x\in\Omega. ∇xL(x∗,λ∗,μ∗)T(x−x∗)≥0,∀x∈Ω.由于 x ∗ ∈ r i ( Ω ) x^*\in\mathbf{ri}(\Omega) x∗∈ri(Ω),根据优化问题中的引理 1.2.2可知此条件等价于 (13).
命题 2.2 说明当优化问题(1) 满足强对偶性, 且原问题和对偶问题均可解时, 可以按一定的步骤求解其最优解 x ∗ x^* x∗:
算法 2.1 优化问题(1)的求解算法:
(2.1.1) 计算对偶函数 g ( λ , μ ) g(\lambda,\mu) g(λ,μ);
(2.1.2) 求解对偶问题(6), 得解 ( λ ∗ , μ ∗ ) ∈ R + p × R q ; (\lambda^*,\mu^*)\in\mathbb{R}_+^p\times\mathbb{R}^q; (λ∗,μ∗)∈R+p×Rq;
(2.1.3) 求解 L ( x ∗ , λ ∗ , μ ∗ ) = g ( λ ∗ , μ ∗ ) L(x^*,\lambda^*,\mu^*)=g(\lambda^*,\mu^*) L(x∗,λ∗,μ∗)=g(λ∗,μ∗),得解 x ∗ ; x^*; x∗;
(2.1.4) 检验 x ∗ x^* x∗ 是否对偶可行条件的第一项:
x ∗ ∈ D , λ i ∗ f i ( x ∗ ) = 0 , i = 1 , ⋯ , p . \begin{align} x^*\in\mathcal{D},\quad\lambda_i^*f_i(x^*)=0,\quad i=1,\cdots,p.\end{align} x∗∈D,λi∗fi(x∗)=0,i=1,⋯,p.
注:根据对偶函数 g ( λ , μ ) g(\lambda,\mu) g(λ,μ) 的定义可知,步骤 (2.1.) 等价于求解优化问题
x ∗ = argmin x ∈ Ω L ( x , λ ∗ , μ ∗ ) . x^*=\operatorname*{argmin}_{x\in\Omega}L(x,\lambda^*,\mu^*). x∗=x∈ΩargminL(x,λ∗,μ∗).一旦 算法 2.1 能执行完成,并使所求得的 x ∗ x^* x∗ 以及 ( λ ∗ , μ ∗ ) (\lambda^*,\mu^*) (λ∗,μ∗) 满足(14), 那么,根据 命题 2.2, x ∗ x^* x∗ 和 ( λ ∗ , μ ∗ ) (\lambda^*,\mu^*) (λ∗,μ∗) 必是优化问题(1)及其对偶问题 (6)的解,且满足强对偶性.
3. 对偶性的鞍点特征
在这小节中将说明强对偶性的几何表现。
首先,强对偶性 η ∗ = ξ ∗ \eta^*=\xi^* η∗=ξ∗, 即 sup λ ⪰ 0 , μ ∈ R q inf x ∈ Ω L ( x , λ , μ ) = inf x ∈ Ω sup λ ⪰ 0 , μ ∈ R q L ( x , λ , μ ) \begin{align} \sup_{\lambda\succeq0,\mu\in\mathbb{R}^q}\inf_{x\in\Omega}L(x,\lambda,\mu)=\inf_{x\in\Omega}\sup_{\lambda\succeq0,\mu\in\mathbb{R}^q}L(x,\lambda,\mu)\end{align} λ⪰0,μ∈Rqsupx∈ΩinfL(x,λ,μ)=x∈Ωinfλ⪰0,μ∈RqsupL(x,λ,μ)中,拉格朗日函数 L ( x , λ , μ ) L(x,\lambda,\mu) L(x,λ,μ) 可以看成由两部分所组成: ( x ) (x) (x)和 ( λ , μ ) (\lambda,\mu) (λ,μ),更为一般地,考虑多元函数 f ( x , y ) f(x,y) f(x,y)以及类似于(15)的等式: sup y ∈ B inf x ∈ A f ( x , y ) = inf x ∈ A sup y ∈ B f ( x , y ) \begin{align}\sup_{y\in B}\inf_{x\in A}f(x,y)=\inf_{x\in A}\sup_{y\in B}f(x,y)\end{align} y∈Bsupx∈Ainff(x,y)=x∈Ainfy∈Bsupf(x,y)其中有效定义域为 dom ( f ) = A × B ⊂ R n × R m \begin{aligned}\textbf{dom}(f)=A\times B\subset\mathbb{R}^n\times\mathbb{R}^m\end{aligned} dom(f)=A×B⊂Rn×Rm,记 ξ ∗ : = inf x ∈ A sup y ∈ B f ( x , y ) , η ∗ = sup y ∈ B inf x ∈ A f ( x , y ) . \begin{align}\xi^*:=\inf_{x\in A}\sup_{y\in B}f(x,y),\quad\eta^*=\sup_{y\in B}\inf_{x\in A}f(x,y).\end{align} ξ∗:=x∈Ainfy∈Bsupf(x,y),η∗=y∈Bsupx∈Ainff(x,y).
命题 3.1 (极大极小不等式) 给定函数 f : A × B → R ‾ f:A\times B\to\overline{\mathbb{R}} f:A×B→R,其中 A ⊂ R n , B ⊂ R m A\subset\mathbb{R}^n,~B\subset\mathbb{R}^m A⊂Rn, B⊂Rm 均为非空子集,有 η ∗ ≤ ξ ∗ . \eta^*\leq\xi^*. η∗≤ξ∗.
证. 对任意的 x ∈ A , y ∈ B x\in A,\:y\in B x∈A,y∈B,根据确界的定义,有 inf x ∈ A f ( x , y ) ≤ f ( x , y ) \inf_{x\in A}f(x,y)\leq f(x,y) infx∈Af(x,y)≤f(x,y).两边对 y ∈ B y\in B y∈B 求上确界,得
sup y ∈ B inf x ∈ A f ( x , y ) ≤ sup y ∈ B f ( x , y ) . \sup\limits_{y\in B}\inf\limits_{x\in A}f(x,y)\leq\sup\limits_{y\in B}f(x,y). y∈Bsupx∈Ainff(x,y)≤y∈Bsupf(x,y).两边再对 x ∈ A x\in A x∈A 求下确界即得 η ∗ ≤ ξ ∗ . \eta^*\leq\xi^*. η∗≤ξ∗.
类似于Larange 对偶函数的情况,称 η ∗ ≤ ξ ∗ . \eta^*\leq\xi^*. η∗≤ξ∗. 为弱对偶性,称 η ∗ = ξ ∗ . \eta^*=\xi^*. η∗=ξ∗.为强对偶性.
若(16)左边的上确界能达到,那么,存在 y ∗ ∈ B y^*\in B y∗∈B, 使得 η ∗ = inf x ∈ A f ( x , y ∗ ) = sup y ∈ B inf x ∈ A f ( x , y ) . \begin{aligned}\eta^*=\inf_{x\in A}f(x,y^*)=\sup_{y\in B}\inf_{x\in A}f(x,y).\end{aligned} η∗=x∈Ainff(x,y∗)=y∈Bsupx∈Ainff(x,y).同理,对于(16)式右边的下确界,若可以达到,则存在 x ∗ ∈ A x^*\in A x∗∈A, 使得 ξ ∗ = sup y ∈ B f ( x ∗ , y ) = inf x ∈ A sup y ∈ B f ( x , y ) . \begin{aligned}\xi^*=\sup_{y\in B}f(x^*,y)=\inf_{x\in A}\sup_{y\in B}f(x,y).\end{aligned} ξ∗=y∈Bsupf(x∗,y)=x∈Ainfy∈Bsupf(x,y).所以,当(16)成立的时候,也就是 ξ ∗ = η ∗ \xi^* = \eta^* ξ∗=η∗,则有: sup y ∈ B f ( x ∗ , y ) = ξ ∗ = η ∗ = inf x ∈ A f ( x , y ∗ ) . \sup_{y\in B}f(x^*,y)=\xi^*=\eta^*=\inf_{x\in A}f(x,y^*). y∈Bsupf(x∗,y)=ξ∗=η∗=x∈Ainff(x,y∗).从而
f ( x ∗ , y ) ≤ sup y ∈ B f ( x ∗ , y ) = ξ ∗ = η ∗ = inf x ∈ A f ( x , y ∗ ) ≤ f ( x , y ∗ ) , ∀ x ∈ A , y ∈ B . \begin{aligned}f(x^*,y)\leq\sup\limits_{y\in B}f(x^*,y)=\xi^*=\eta^*=\inf\limits_{x\in A}f(x,y^*)\leq f(x,y^*),\quad\forall x\in A,\:y\in B.\end{aligned} f(x∗,y)≤y∈Bsupf(x∗,y)=ξ∗=η∗=x∈Ainff(x,y∗)≤f(x,y∗),∀x∈A,y∈B.上式中取 x = x ∗ , y = y ∗ x=x^*,\:y=y^* x=x∗,y=y∗, 可以得到 f ( x ∗ , y ∗ ) = ξ ∗ = η ∗ f(x^*,y^*)=\xi^*=\eta^* f(x∗,y∗)=ξ∗=η∗. 所以
f ( x ∗ , y ) ≤ f ( x ∗ , y ∗ ) ≤ f ( x , y ∗ ) , ∀ x ∈ A , y ∈ B . \begin{align} f(x^*,y)\leq f(x^*,y^*)\leq f(x,y^*),\quad\forall x\in A,\:y\in B.\end{align} f(x∗,y)≤f(x∗,y∗)≤f(x,y∗),∀x∈A,y∈B.这说明 ( x ∗ , y ∗ ) (x^*,y^*) (x∗,y∗) 是 f f f 中的鞍点,定义如下.
定义 3.1 (鞍点) 对于函数 f : A × B → R ‾ f:A\times B\to\overline{\mathbb{R}} f:A×B→R,其中 A ⊂ R n , B ⊂ R m A\subset\mathbb{R}^n,\quad B\subset\mathbb{R}^m A⊂Rn,B⊂Rm ,若 ( x ∗ , y ∗ ) ∈ A × B (x^*,y^*)\in A\times B (x∗,y∗)∈A×B 满足(18),则称之为 f f f 的一个鞍点.
命题 3.2 (强对偶性的鞍点刻画) 给定函数 f : A × B → R ‾ f:A\times B\to\overline{\mathbb{R}} f:A×B→R,其中 A ⊂ R n , B ⊂ R m A\subset\mathbb{R}^n,~B\subset\mathbb{R}^m A⊂Rn, B⊂Rm, ( x ∗ , y ∗ ) ∈ A × B (x^*,y^*)\in A\times B (x∗,y∗)∈A×B 是 f f f 的一个鞍点,即满足(18), 当且仅当 sup y ∈ B f ( x ∗ , y ) = ξ ∗ = η ∗ = inf x ∈ A f ( x , y ∗ ) . \begin{align} \sup\limits_{y\in B}f(x^*,y)=\xi^*=\eta^*=\inf\limits_{x\in A}f(x,y^*).\end{align} y∈Bsupf(x∗,y)=ξ∗=η∗=x∈Ainff(x,y∗).此外,当 ( x ∗ , y ∗ ) (x^*,y^*) (x∗,y∗) 是 f f f的鞍点时,有 f ( x ∗ , y ∗ ) = ξ ∗ . f( x^* , y^* ) = \xi^* . f(x∗,y∗)=ξ∗.
证.充分性如上已证,下证必要性.
设 ( x ∗ , y ∗ ) (x^*,y^*) (x∗,y∗) 是 f f f 的一个鞍点,则(18)式成立,即 f ( x ∗ , y ) ≤ f ( x ∗ , y ∗ ) ≤ f ( x , y ∗ ) , ∀ x ∈ A , y ∈ B f(x^*,y)\leq f(x^*,y^*)\leq f(x,y^*),\quad\forall x\in A,\:y\in B f(x∗,y)≤f(x∗,y∗)≤f(x,y∗),∀x∈A,y∈B,这个式子的第一个不等式对 y ∈ B y \in B y∈B 求上确界,第而个不等式对 x ∈ A x \in A x∈A 求下确界,可以得到 sup y ∈ B f ( x ∗ , y ) ≤ f ( x ∗ , y ∗ ) ≤ inf x ∈ A f ( x , y ∗ ) . \begin{align}\sup_{y\in B}f(x^*,y)\leq f(x^*,y^*)\leq\inf_{x\in A}f(x,y^*).\end{align} y∈Bsupf(x∗,y)≤f(x∗,y∗)≤x∈Ainff(x,y∗).从而有 ξ ∗ = inf x ∈ A sup y ∈ B f ( x , y ) ≤ sup y ∈ B f ( x ∗ , y ) ≤ f ( x ∗ , y ∗ ) ≤ inf x ∈ A f ( x , y ∗ ) ≤ sup y ∈ B inf x ∈ A f ( x , y ) = η ∗ . \begin{aligned}\xi^*&=\inf_{x\in A}\sup_{y\in B}f(x,y)\le\sup_{y\in B}f(x^*,y)\le f(x^*,y^*)\le\inf_{x\in A}f(x,y^*)\le\sup_{y\in B}\inf_{x\in A}f(x,y)=\eta^*.\end{aligned} ξ∗=x∈Ainfy∈Bsupf(x,y)≤y∈Bsupf(x∗,y)≤f(x∗,y∗)≤x∈Ainff(x,y∗)≤y∈Bsupx∈Ainff(x,y)=η∗.
如果我们将鞍点的定义用到优化问题(1)的拉格朗日函数中去,会发生什么呢?设 g ( λ , μ ) g(\lambda,\mu) g(λ,μ)是优化问题(1)的对偶函数,而 ξ ∗ \xi^* ξ∗ 和 η ∗ \eta^* η∗ 分别是优化问题(1)及其对偶问题的最优解,我们称解 ( x ∗ , λ ∗ , μ ∗ ) (x^*,\lambda^*,\mu^*) (x∗,λ∗,μ∗)为拉格朗日函数 L ( x , λ , μ ) L(x,\lambda,\mu) L(x,λ,μ)的鞍点,如果满足条件: L ( x ∗ , λ , μ ) ≤ L ( x ∗ , λ ∗ , μ ∗ ) ≤ L ( x , λ ∗ , μ ∗ ) , ∀ x ∈ Ω , ( λ , μ ) ∈ R + p × R q . L(x^*,\lambda,\mu)\leq L(x^*,\lambda^*,\mu^*)\leq L(x,\lambda^*,\mu^*),\quad\forall x\in\Omega,(\lambda,\mu)\in\mathbb{R}_+^p\times\mathbb{R}^q. L(x∗,λ,μ)≤L(x∗,λ∗,μ∗)≤L(x,λ∗,μ∗),∀x∈Ω,(λ,μ)∈R+p×Rq.于是,这就可以说明鞍点是可以用来刻画优化问题(1)及其对偶问题(6)的解以及强对偶性.