信号与线性系统翻转课堂笔记4——连续LTI系统的微分方程模型与求解

信号与线性系统翻转课堂笔记4——连续LTI系统的微分方程模型与求解

The Flipped Classroom4 of Signals and Linear Systems

对应教材:《信号与线性系统分析(第五版)》高等教育出版社,吴大正著

一、要点

(1)连续LTI系统的微分方程模型及其经典解,了解齐次解+特解的微分方程求解方法;
(2)系统响应的分解:掌握自由(固有)响应/强迫响应、瞬态响应/稳态响应、零输入响应/零状态响应的概念,能够熟练完成系统响应的分解;
(3,重点)0-和0+初始值问题,了解系统初始状态在0时刻产生突变的原因,熟练掌握0+初始值的求解方法;系统微分方程的算子表示法;
(4,重点)系统零输入响应和零状态响应的分别求解,熟练掌握求解方法。

二、问题与解答

1、系统自由响应为什么又被称为固有响应,这种时域响应的模态(随时间的变化规律)主要取决于什么?它与系统外加的输入激励有没有关系?预备训练一的RLC电路,C1取两种不同值的情况下,所得到系统微分方程的特征根有什么不同(列出系统微分方程并求出其特征根)?这种不同对于系统的自由响应模态有何影响?二阶电路(如RLC电路)的过阻尼、欠阻尼、临界阻尼、无阻尼分别对应于特征根的何种情形?

2、试分析以下几个论断的正误:①零输入响应一定是自由响应;②自由响应一定是零输入响应;③零状态响应一定是强迫响应;④零状态响应包括自由响应和强迫响应。

3、为什么“微分方程等号右端含有冲激函数及其各阶导数时,响应y(t)及其各阶导数由0-到0+的瞬间将发生跃变”(教材p45),这反映了冲激或者冲激偶所具有的何种特性?

4、求解教材课后习题2.2(4),据此总结求0-到0+跃变的方法和步骤,特别注意与教材例2.1-3、2.1-4进行比较,说明如何确定等号右端冲激的阶次与等号左端y(t)的最高阶次的对应关系。

5、求解教材课后习题2.4(2),其中零状态响应分别用常规方法(教材例2.1-5方法)和微分特性(教材例2.1-6方法)这两种方法求解,并分别指出全响应中的自由响应/强迫响应、稳态响应/暂态响应。

6、动态系统的时域响应,可以理解为系统输出跟随输入指令,从一种状态到另一种状态的转换(例如数字电路中0、1电平的转换)。对于实际的物理系统来说,这种转换总是需要花费一定的时间的(转换不可能瞬时完成,需要一个过渡过程),而不能突变(思考:前面第3个讨论题所分析的0-到0+跃变,为什么在实际物理系统中不可能发生?)。针对预备训练一的RLC电路在方波输入激励下的响应(输出),从输出反应的速度、一个稳态到另一个稳态所用时间、输出过冲(超调)量大小等几个方面,比较分析电路工作于欠阻尼、过阻尼这两种状态,其过渡过程各自的特点。

1、系统的自由响应

系统自由响应为什么又被称为固有响应,这种时域响应的模态(随时间的变化规律)主要取决于什么?它与系统外加的输入激励有没有关系?(第1问)预备训练一的RLC电路,C1取两种不同值的情况下,所得到系统微分方程的特征根有什么不同(列出系统微分方程并求出其特征根)?这种不同对于系统的自由响应模态有何影响?(第2问)二阶电路(如RLC电路)的过阻尼、欠阻尼、临界阻尼、无阻尼分别对应于特征根的何种情形?(第3问)


(1)动态电路的完全响应中,已由初始条件确定待定系数k的微分方程通解部分,称为电路系统的自由响应。它的函数形式由电路系统本身结构决定,与外加激励无关,所以也称为固有响应。
(2)
在这里插入图片描述

在这里插入图片描述

(3)
在这里插入图片描述

2、各类响应的关系

试分析以下几个论断的正误:①零输入响应一定是自由响应;②自由响应一定是零输入响应;③零状态响应一定是强迫响应;④零状态响应包括自由响应和强迫响应。


(1)对
(2)错
(3)错
(4)对
(自由响应=固有响应)
在这里插入图片描述

3、冲激函数的特性

为什么“微分方程等号右端含有冲激函数及其各阶导数时,响应y(t)及其各阶导数由0-到0+的瞬间将发生跃变”(教材p45),这反映了冲激或者冲激偶所具有的何种特性?


0-是零输入时的初始状态,初始值是由系统的储能决定的;0+是加了输入后的初始状态,初始值受储能与激励的双重影响。
作用时间无穷小,反映了冲激或者冲激偶的瞬时特性。

4、初值求解问题

求解教材课后习题2.2(4),据此总结求0-到0+跃变的方法和步骤,特别注意与教材例2.1-3、2.1-4进行比较,说明如何确定等号右端冲激的阶次与等号左端y(t)的最高阶次的对应关系。


在这里插入图片描述

在这里插入图片描述
等号右端冲激函数的最高阶导数阶次与等号左端y(t)的最高导数阶次相等。
系统中从0-到0+有无跳变取决于微分方程右端是否包含冲激函数及其各阶导数,如果包含即发生了跳变,用冲激函数匹配法求出0+状态,冲激函数匹配法是根据t=0时刻微分方程左右两端的冲激函数及其各阶导数应该平衡等。
1、找最高阶,右端δ(t)最高阶对应左端最高阶。
2、由高到低列式子,直到出现阶跃信号u(t)。
3、把第二步列的式子带入到微分方程,系统进行匹配。
4、找出阶数对应的跳变值,r(k)(0+)=r(k)(0-)+跳变值。

5、零输入响应、零状态响应与全响应求解问题

求解教材课后习题2.4(2),其中零状态响应分别用常规方法(教材例2.1-5方法)和微分特性(教材例2.1-6方法)这两种方法求解,并分别指出全响应中的自由响应/强迫响应、稳态响应/暂态响应。


在这里插入图片描述
零状态响应用常规方法求解:
在这里插入图片描述
在这里插入图片描述
零状态响应部分用微分特性求解:

在这里插入图片描述

6、实际物理系统的响应过渡过程

动态系统的时域响应,可以理解为系统输出跟随输入指令,从一种状态到另一种状态的转换(例如数字电路中0、1电平的转换)。对于实际的物理系统来说,这种转换总是需要花费一定的时间的(转换不可能瞬时完成,需要一个过渡过程),而不能突变(思考:前面第3个讨论题所分析的0-到0+跃变,为什么在实际物理系统中不可能发生?(第一问))。针对预备训练一的RLC电路在方波输入激励下的响应(输出),从输出反应的速度、一个稳态到另一个稳态所用时间、输出过冲(超调)量大小等几个方面,比较分析电路工作于欠阻尼、过阻尼这两种状态,其过渡过程各自的特点。(第二问)
(1)从0-到0+是一种理想化的数学模型,现实中无法产生,因为需要满足冲激信号幅度无穷大,瞬时功率无穷大,变化速度无穷大。
(2)
一个系统受初扰动后不再受外界激励,因受到阻力造成能量损失而位移峰值渐减的振动称为阻尼振动。

欠阻尼:如果负载阻抗大于传输线的特性阻抗,那么负载端多余的能量就会反射回源端,由于负载端没有吸收全部能量,故称这种情况为欠阻尼。
输出反应的速度快、一个稳态到另一个稳态所用时间长、输出过冲(超调)量大。

过阻尼:如果负载阻抗小于传输线的特性阻抗,那么负载试图消耗比当前源端提供的能量更多的能量,故反射回来通知源端输送更多的能量,故称这种情况为过阻尼。
输出反应的速度慢、一个稳态到另一个稳态所用时间短、输出过冲(超调)量小。

三、反思总结

暂无

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/230134.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索 Coinbase 二层链 Base 的潜力与风险

作者:lesleyfootprint.network 在不断变化的加密货币领域,Coinbase 已经确立了自己领先中心化交易所(CEX)的地位。然而,Coinbase 坚信去中心化是创造一个开放、全球范围内对每个人都可访问的加密经济的关键&#xff0…

python学习3

大家好,今天又来更新python学习篇了。本次的内容比较简单,时描述性统计代码,直接给出所有代码,如下: import pandas as pd from scipy.stats import fisher_exact from fuzzywuzzy import fuzz from fuzzywuzzy impor…

高性能计算HPC与统一存储

高性能计算(HPC)广泛应用于处理大量数据的复杂计算,提供更精确高效的计算结果,在石油勘探、基因分析、气象预测等领域,是企业科研机构进行研发的有效手段。为了分析复杂和大量的数据,存储方案需要响应更快&…

【兔子王赠书第12期】赠ChatGPT中文范例的自然语言处理入门书

文章目录 写在前面自然语言处理图书推荐图书简介编辑推荐 推荐理由粉丝福利写在后面 写在前面 小伙伴们好久不见吖,本期博主给大家推荐一本入门自然语言处理的经典图书,一起来看看吧~ 自然语言处理 自然语言处理(Natural Language Process…

【面向对象】C++/python/java的多态比较

一、面向对象的主要特点 封装:封装是把数据和操作数据的方法绑定在一起,对数据的访问只能通过已定义的接口。这可以保护数据不被外部程序直接访问或修改,增强数据的安全性。继承:继承是一种联结类的层次模型,并且允许…

机器学习 | KNN算法

一、KNN算法核心思想和原理 1.1、怎么想出来的? 近朱者赤,近墨者黑! 距离决定一切、民主集中制 1.2、基本原理 —— 分类 k个最近的邻居 民主集中制投票分类表决与加权分类表决 1.3、基本原理 —— 回归 计算未知点的值决策规则不同均值法与…

【UML】第5篇 UML中的视图和图

目录 一、视图和图 二、图的种类 2.1 结构图 2.2 行为图 图是UML中最重要的概念了,起码我是这么认为。 上篇关于低代码的文章,我也说了,未来也许AI编码,我们更重要的工作,是能够为业务进行建模,拆解&a…

mybatis plus 公共字段自动填充createBy updateBy

一、公共字段自动填充 需求:好多表公共的字段,赋值逻辑也相同,不用每次为其赋值,‘拦截器’统一赋值。 1. 在新增数据时,需要设置创建时间、创建人、修改时间、修改人等字段,在编辑数据时需要设置修改时间…

FL Studio21.2.2963水果音乐软件安装

FL Studio是功能强大的音乐制作解决方案,使用旨在为用户提供一个友好完整的音乐创建环境,让您能够轻松创建、管理、编辑、混合具有专业品质的音乐,一切的一切都集中在一个软件中,只要您想,只要您需要,它总能…

深兰科技入选财联社“2023科创好公司”榜单

12月13日,“2023科创好公司”评选榜单正式公布,深兰科技成功入选,获得该榜单中“新能源汽车及自动驾驶”赛道的“科创好公司”称号。 “科创好公司”榜评选是由财联社及《科创板日报》联合打造的一级市场投后服务体系中的重要活动项目&#x…

Axure 9基本元件,表单及表格元件简介,表单案例

目录 一.基本元件 1.元件基本介绍 2.基本元件的使用 二.表单及表格元件 三.表单案例 四.简单简历绘制 一.基本元件 1.元件基本介绍 概述 - 在Axure RP中,元件是**构建原型图的基础模块**。 将元件从元件库里拖拽到画布中,即可添加元件到你的原型…

什么店生意好?C++采集美团商家信息做数据分析

最近遇到几个朋友,想要一起合伙投资一个实体店,不问类型,就看哪类产品相对比较受欢迎。抛除地址位置,租金的影响,我们之谈产品。因此,我熬了几个通宵,写了这么一段爬取美团商家商品信息的数据并…

如何在 Windows 10/11 上恢复永久删除的文件夹

如果您曾经错误地删除过某个文件夹,您就会知道随之而来的恐慌。您认为当您在某些内容上单击“删除”时,它就会永远消失。但情况并非总是如此。您可以使用几种不同的方法来恢复已删除的文件夹 。 本指南将向您展示如何在 Windows 10/11 上恢复永久删除的…

Axure RP - 交互设计的强大引擎

目录 前言 1. 交互设计:连接用户与产品的纽带 2. 情景设计:预测用户行为的未来 3. 演示和共享:让设计活起来 我的其他博客 前言 在数字化时代,用户体验的重要性日益突显,而交互设计成为塑造产品与用户互动的关键。…

colmap三维重建核心逻辑梳理

colmap三维重建核心逻辑梳理 1. 算法流程束流2. 初始化3. 重建主流程 1. 算法流程束流 重建核心逻辑见 incremental_mapper.cc 中 IncrementMapperController 中 Reconstruct 初始化变量和对象判断是否有初始重建模型,若有,则获取初始重建模型数量&am…

基于Python实现的一个书法字体风格识别器源码,通过输入图片,识别出图片中的书法字体风格,采用Tkinter实现GUI界面

项目描述 本项目是一个书法字体风格识别器,通过输入图片,识别出图片中的书法字体风格。项目包含以下文件: 0_setting.yaml:配置文件,包含书法字体风格列表、图片调整大小的目标尺寸等设置。1_Xy.py:预处理…

SourceTree 免登录跳过初始设置

用于Windows和Mac的免费Git客户端。 Sourcetree简化了如何与Git存储库进行交互,这样您就可以集中精力编写代码。通过Sourcetree的简单Git GUI可视化和管理存储库。 SourceTree 安装之后需要使用账号登陆以授权,以前是可以不登陆的,但是现在是…

neuq-acm预备队训练week 10 P1129 [ZJOI2007] 矩阵游戏

题目描述 小 Q 是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏。矩阵游戏在一个 nn 黑白方阵进行(如同国际象棋一般,只是颜色是随意的)。每次可以对该矩阵进行两种操作: 行…

为什么在Android中需要Context?

介绍 在Android开发中,Context是一个非常重要的概念,但是很多开发者可能并不清楚它的真正含义以及为什么需要使用它。本文将详细介绍Context的概念,并解释为什么在Android应用中需要使用它。 Context的来源 Context的概念来源于Android框架…

Win32程序与MFC程序构建顺序梳理

Windows程序的生成顺序 Windows窗口的生命周期 初始化操作 从WinMain函数开始,注册窗口;创建窗口; 调用CreateWindow,为程序建立了一个窗口,作为程序的屏幕 舞台。CreateWindow产生窗口之后会送出WM_CREATE消息给窗口函数&…