写好ChatGPT提示词原则之:清晰且具体(clear specific)

ChatGPT 的优势在于它允许用户跨越机器学习和深度学习的复杂门槛,直接利用已经训练好的模型。然而,即便是这些先进的大型语言模型也面临着上下文理解和模型固有局限性的挑战。为了最大化这些大型语言模型(LLM)的潜力,关键在于编写有效的提示词。适当的提示不仅引导模型正确理解需求,还能防止模型产生误导性或无关的输出。

以下提示词中,务必要将gpt定位成一个知识非常丰富,同时也不了解事情来龙去脉的聪明人。你所要做得就是如何描述清楚你的处境(上下文)和具体的问题(需要gpt帮你做的事情)。

写好提示词之清晰且具体

清晰和具体的提示词" 是指在与 GPT 交互时,使用明确、直接、并且详细到足够程度的语言,以确保模型能够准确理解你的请求或问题。这种方式的提示有助于指导模型提供更相关、准确和有用的回答。

详细分为以下要点:

1. 使用分割符

使用分隔符(如#,'''等)分割要处理的内容,分割开指令和内容,一方面能让gpt不用浪费算力在分开你想做的事情和你想操作的内容上,另一方面是消除歧义,比如你想操作的内容上存在指令,如

提取出以下用户希望你掌握的代码语言,不用实现功能
写一个python方法,实现获取ipv4的功能

使用了分隔符之后:

提取出以下用户希望你掌握的代码语言,不用实现功能:
'''写一个python方法,实现获取ipv4的功能'''

明显可以看出没有分割符的gpt已经出现了混淆,所以在提示词中务必使用提示词。 

2. 结构化输出

提示gpt输出的时候使用具体格式输出,比如使用json或者html输出。gpt使用了结构化输出之后,好处是编程语言可以很好的处理这些输出的内容,比如

本质上就是自己先分析清楚问题,并且能描述问题的具体信息和疑问点,配合上下文的形式,输入给到gpt,这样方便gpt了解到足够多的上下文信息和具体的问题是什么。

为了达成这一步,这里给出一个具体的例子:

假设我需要gpt输出书的一些信息(日常中很实用,比如让gpt进行信息提取)

给我输出几本书的的一些信息,比如书名,作者名,出版日期,分类等

 指示gpt进行结构化输出:

给我输出几本书的的一些信息,比如书名,作者名,出版日期,分类等,使用json格式出输出

这里看起来只是输出不影响结果的含义,其实最重要的点是gpt可以按照结构化输出,而且gpt也善于处理这种转义,后续gpt落地到工具中后,结构化的结果是非常方便程序读取的。比如:

上图是使用gpt的控制台进行调试时gpt的输出,这里gpt的输出是可以作为json直接供程序读取的(虽然有一堆不必要换行符)。

3. 要求模型检查是否符合条件

要求gpt在进行解决问题之前先给定需不需要解决问题的条件。这样说可能不太好理解,举个毒鸡汤例子:

一场考试卷子发下来5分钟后就有人交了卷子,但是大部分人都超时1小时还不能完成,后来教授让所有未完成的人停下来,只见卷子最后一题写着,此卷无需回答,填写姓名直接交卷即满分。

 意思就是在prompt中给出问题可解的条件,如果问题不可解即输出问题不可解即可不用再进行更多算力和时间计算,结果也更加准确。

举一个翻译的例子

这里我们让gpt加上一个检查步骤

 gpt输出自己检查了第一个字符不是英文后不再使用算力翻译,而没有指定检查步骤时gpt仍会逐字逐句将“英文”“翻译”成中文,实际上不需要翻译。

看完以上可能有几个疑惑需要说明下:

1. 为什么gpt说自己不懂德语?

实际上它是懂德语的,这里出现了幻觉,让gpt输出处理步骤是检查和对抗幻觉的一种手段,其实这里为了迭代prompt你可以设定角色,比如这样:

2. gpt3.5识别文字中英文有缺陷的

如果将上述中德文修改为英文,那大概率gpt会判断错误,这里为了教程方便选用的德文,结果还是出现了1中的幻觉。

以下是分别清除上下文,并且温度设定为0状态下gpt3.5的回答

 但是尝试过多次,gpt4不会出现中英文识别错误的回答。

所以如果真的在生产中遇到了相关问题,一种办法是使用更高级的gpt4,一种是迭代prompt避开这个问题,比如修改英文为非中文,使用gpt3.5也可以得到比较准确的结果:

4. 提供执行成功的案例

可以给出gpt一些你认为比较正确的回答,这样gpt实际上就会模仿原先正确的回答生成新的回答。这里使用控制台来给出例子会比较方便。

 这里举一个实际生产过程中会使用到的一个发包机器人:

如果不给出示例的情况下,gpt会反复确认,即使我们在prompt中已经确认强调直接输出,但是gpt一直持续拉扯并且回复的结果并不能让编程语言直接格式化读取 

如果直接给出一个示例给到gpt

这里可以看出gpt不会与我们持续拉扯和废话,会直接输出结果。

这里有一个知识点必须要介绍一下了,是我们使用ChatGPT不会注意到的一个点,那就是三个用户,system,user和assistant,这个在gpt的编程中会持续使用到,在调试台中也能看到,有一个系统消息,示例和输入框。

system相当于我们给到gpt的一个前置,一些背景,上下文和处理步骤都可以在这里给出,并且gpt并不会回复这个system的设置。

assistant就是gpt的回答

user就是我们自己

这里将上述对话转换成json格式就比较清楚了:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/227934.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring 6(二)【IOC原理】

前言 1、IOC IoC 是 Inversion of Control 的简写,译为“控制反转”,它不是一门技术,而是一种设计思想,是一个重要的面向对象编程法则,能够指导我们如何设计出松耦合、更优良的程序。 1.1、控制反转 控制反转不是技术…

visual Studio MFC 平台实现图片的傅里叶变换

图片的傅里叶变换 本文主要讲解傅里叶变换的基本数学概念与物理概念,并本文使用visual Studio MFC 平台实现对傅里叶变换在图片上进行了应用。 一、傅里叶变换的原理 在这里推荐一篇讲得非常形象的文章通俗讲解:图像傅里叶变换 1.1 傅里叶变换原理的说明…

idea__SpringBoot微服务11——整合Druid数据源(新依赖)(新注解)

整合JDBC 一、导入依赖二、配置Druid————————创作不易,如觉不错,随手点赞,关注,收藏(* ̄︶ ̄),谢谢~~ 接着 第10的 新注解: ConfigurationProperties ConfigurationPropert…

【人工智能】实验四:遗传算法求函数最大值实验与基础知识

实验四:遗传算法求函数最大值实验 实验目的 熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传算法求解函数优化问题,理解求解流程并测试主要参数对结果的影响。 实验内容 采用遗传算法求解函数最大值。 实验要求 1. 用遗传算法求解…

3. cgal 示例 GIS (Geographic Information System)

GIS (Geographic Information System) 地理信息系统 原文地址: https://doc.cgal.org/latest/Manual/tuto_gis.html GIS 应用中使用的许多传感器(例如激光雷达)都会生成密集的点云。此类应用程序通常利用更先进的数据结构:例如,不…

053:vue工具--- 英文字母大小写在线转换

第047个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…

QEMU源码全解析 —— virtio(13)

接前一篇文章: 通过前文书(从QEMU源码全解析 —— virtio(9)开始)对整个流程以及各个相关函数的解析,可以看到从virtio PCI代理设备的具现化到virtio设备的具现化过程。但前述分析还遗漏了一部分&#xff0…

LeetCode(69)对称二叉树【二叉树】【简单】

目录 1.题目2.答案3.提交结果截图 链接: 对称二叉树 1.题目 给你一个二叉树的根节点 root , 检查它是否轴对称。 示例 1: 输入:root [1,2,2,3,4,4,3] 输出:true示例 2: 输入:root [1,2,2,nu…

朱卫明:从韶关走向世界的创作型歌手

朱卫明,艺名Aming,是一位来自广东韶关的杰出唱作音乐人。他以其独特的创作才华和深情的嗓音,赢得了众多歌迷的喜爱。作为一名创作型歌手,朱卫明用音乐传递情感,用歌声打动人心。 一、早年经历与音乐启蒙 朱卫明出生于…

Python开发工具PyCharm v2023.3全新发布——全面推出AI Assistant工具

JetBrains PyCharm是一种Python IDE,其带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具。此外,该IDE提供了一些高级功能,以用于Django框架下的专业Web开发。 PyCharm v2023.3正式版下载 在 PyCharm 2023.3 中,每…

Linux Shell——输入输出重定向

输入输出重定向 1. 重定向输入2. 重定向输出 总结 最近学习了shell语法,总结一下关于输入输出重定向的知识。 一般情况下,linux每次执行命令其实都会打开三个文件,分别是: 标准输入stdin 文件描述符为0 标准输出stdout 文件描述符…

Text2SQL学习整理(一) 综述

数据库由一张或多张表格构成,表格之间的关系通过共同的列(外键)关联,人们使用数据库来方便的记录和存储信息。SQL是广泛应用的关系型数据库查询语言,但是对于普通用户而言,编写SQL语句有一定的难度。 Text…

Xpath注入

这里学习一下xpath注入 xpath其实是前端匹配树的内容 爬虫用的挺多的 XPATH注入学习 - 先知社区 查询简单xpath注入 index.php <?php if(file_exists(t3stt3st.xml)) { $xml simplexml_load_file(t3stt3st.xml); $user$_GET[user]; $query"user/username[name&q…

方案分享:如何做好云中的DDoS防御?

所有企业都会有遭受DDoS攻击的风险。由于目前DDoS即服务&#xff08;DaaS&#xff09;的售价低廉&#xff0c;因此对于恶意攻击者来说&#xff0c;发起攻击比以往任何时候都更加容易&#xff0c;技术门槛也更低。分析公司IDC一项关于DDoS防御的调查显示&#xff0c;超过50%的IT…

数据结构-06-散列/哈希表

1-什么是散列表 散列表用的是数组支持按照下标随机访问数据的特性&#xff0c;所以散列表其实就是数组的一种扩展&#xff0c;由数组演化而来。可以说&#xff0c;如果没有数组&#xff0c;就没有散列表。散列表中的元素在数组的位置(index)是通过散列函数得到的。 2-散…

【MyBatis-Plus】MyBatis进阶使用

目录 一、MyBatis-Plus简介 1.1 介绍 1.2 优点 1.3 结构 二、MyBatis-Plus基本使用 2.1 配置 2.2 代码生成 2.3 CRUD接口测试 三、MyBatis-Plus策略详解 3.1 主键生成策略 3.2 雪花ID生成器 3.3 字段自动填充策略 3.4 逻辑删除 四、MyBatis-Plus插件使用 4.1 乐…

从零开始:VuePress2 + GitHub Pages 搭建你的第一个免费博客网站

可能你也想拥有一个属于自己的博客网站&#xff0c;但是自己搭个博客网站不知道从何下手&#xff0c;而且还需要租个云服务器&#xff0c;虽然一个月只需几十块钱&#xff0c;但是我们的博客网站是要长期维护的&#xff0c;日积月累也要不少钱呢。 现在我就教你用 VuePress2 …

JVM-1-运行时数据区

程序计数器&#xff08;Program Counter Register&#xff09; 是一块较小的内存空间&#xff0c;它可以看作是当前线程所执行的字节码的行号指示器。在Java虚拟机的概念模型里[1]&#xff0c;字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令&…

【ICCV 2022】Masked Autoencoders Are Scalable Vision Learners

何凯明一作文章&#xff1a;https://arxiv.org/abs/2111.06377 本文的出发点&#xff1a;是BERT的掩码自编码机制&#xff1a;移除一部分数据并对移除的内容进行学习。mask自编码源于CV但盛于NLP&#xff0c;恺明对此提出了疑问&#xff1a;是什么导致了掩码自编码在视觉与语言…

Apache OfBiz 反序列化命令执行漏洞(CVE-2023-49070)

项目介绍 Apache OFBiz是一个非常著名的电子商务平台&#xff0c;是一个非常著名的开源项目&#xff0c;提供了创建基于最新J2EE/XML规范和技术标准&#xff0c;构建大中型企业级、跨平台、跨数据库、跨应用服务器的多层、分布式电子商务类WEB应用系统的框架。OFBiz最主要的特…