完美解决labelimg xml转可视化中文乱码问题,不用matplotlib

背景简述

我们有一批标注项目要转可视化,因为之前没有做过,然后网上随意找了一段代码测试完美(并没有)搞定,开始疯狂标注,当真正要转的时候傻眼了,因为测试的时候用的是英文标签,实际标注的是中文标签,结果都是一大堆??????,在这里插入图片描述
结果瞬间让我满脑袋??????,赶紧找资料解决,各种方法试了个遍,网上大多数都是用cv2+matplotlib实现的计算和渲染,所以解决的主要思想就是集中在各种显示的设置matplotlib字体,然并卵;最后找到一种另辟蹊径的办法使用PIL+cv2实现,最后完美解决,在这里插入图片描述
贴上解决代码:

import cv2
import os
import numpy as np  
from PIL import Image, ImageDraw, ImageFont
import xml.etree.ElementTree as ETdata_path = 'E:\\test\\tianjingulou'
imgs_path = os.path.join(data_path, "img")
anns_path = os.path.join(data_path, "xml")
result_path = os.path.join(data_path)img_names = set([os.path.splitext(i)[0] for i in os.listdir(imgs_path)])
ann_names = set([os.path.splitext(i)[0] for i in os.listdir(anns_path)])
img_names = list(img_names)
ann_names = list(ann_names)for i in range(len(img_names)):img_path = os.path.join(imgs_path, img_names[i] + ".jpg")img_bgr = cv2.imread(img_path)xml_path = os.path.join(anns_path, ann_names[i] + ".xml")xml_inf = open(xml_path, encoding='utf-8')tree = ET.parse(xml_inf)root = tree.getroot()bbox_color = (0, 129, 255)bbox_thickness = 2# 把rgb转成16进制'#0081FF'bbox_color_str = "#{:02x}{:02x}{:02x}".format(*bbox_color)# 把rgb转成bgr再转16进制'#FF8100'# bbox_color_rgb = bbox_color[::-1]# bbox_color_str = "#{:02x}{:02x}{:02x}".format(*bbox_color_rgb)bbox_labelstr = {'font_size': 16,'font_thickness': 2,'offset_x': 0,'offset_y': -20,}# 创建一个空白图像img_pil = Image.fromarray(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB))draw = ImageDraw.Draw(img_pil)# 设置字体  SimHei.ttf黑体,msyh.ttf微软雅黑# 打开命令行窗口或者Anaconda Prompt,输入python,进入python解释器窗口,#   输入import matplotlib;引入可视化库;#   然后输入print(matplotlib.matplotlib_fname())打印出当前库所在位置;#   进入到上面打印出的路径下字体目录:mpl-data\\fonts\\ttf,下载中文字体放进去font_path = "D:\\ProgramData\\anaconda3\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\msyh.ttf"  # 请替换为实际路径font = ImageFont.truetype(font_path, bbox_labelstr['font_size'])# 画框和文字for obj in root.iter('object'):bbox_label = obj.find('name').textbbox_top_left_x = int(obj.find('bndbox').find('xmin').text)bbox_top_left_y = int(obj.find('bndbox').find('ymin').text)bbox_bottom_right_x = int(obj.find('bndbox').find('xmax').text)bbox_bottom_right_y = int(obj.find('bndbox').find('ymax').text)draw.rectangle([(bbox_top_left_x, bbox_top_left_y), (bbox_bottom_right_x, bbox_bottom_right_y)],outline=bbox_color, width=bbox_thickness)draw.text((bbox_top_left_x + bbox_labelstr['offset_x'], bbox_top_left_y + bbox_labelstr['offset_y']),bbox_label, font=font, fill=bbox_color_str)img_bgr = cv2.cvtColor(np.array(img_pil), cv2.COLOR_RGB2BGR)# 保存图像cv2.imwrite(result_path + "\\{}.jpg".format(img_names[i]), img_bgr)

下面是matplotlib+cv2版代码

# 数据集可视化
import cv2
import os
import matplotlib.pyplot as plt
import xml.etree.ElementTree as ET# 设置 Matplotlib 使用的字体为黑体
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False imgs_path = 'E:\\test\\tianjingulou\\img'
anns_path = 'E:\\test\\tianjingulou\\xml'img_names = set([os.path.splitext(i)[0] for i in os.listdir(imgs_path)])
ann_names = set([os.path.splitext(i)[0] for i in os.listdir(anns_path)])
img_names = list(img_names)
ann_names = list(ann_names)for i in range(len(img_names)):img_path = os.path.join(imgs_path, img_names[i] + ".jpg")img_bgr = cv2.imread(img_path)xml_path = os.path.join(anns_path, ann_names[i] + ".xml")xml_inf = open(xml_path, encoding='utf-8')tree = ET.parse(xml_inf)root = tree.getroot()# 框可视化配置bbox_color = (255, 129, 0)  # 框的颜色bbox_thickness = 2  # 框的线宽# 框类别文字bbox_labelstr = {'font_size': 1,  # 字体大小'font_thickness': 2,  # 字体粗细'offset_x': 0,  # X 方向,文字偏移距离,向右为正'offset_y': -10,  # Y 方向,文字偏移距离,向下为正}
# 画框for obj in root.iter('object'):  # 一个object代表一个标注物体# 框的类别bbox_label = obj.find('name').text# 框的两点坐标# 左上角坐标bbox_top_left_x = int(obj.find('bndbox').find('xmin').text)bbox_top_left_y = int(obj.find('bndbox').find('ymin').text)# 右下角坐标bbox_bottom_right_x = int(obj.find('bndbox').find('xmax').text)bbox_bottom_right_y = int(obj.find('bndbox').find('ymax').text)# 画矩形:画框img_bgr = cv2.rectangle(img_bgr, (bbox_top_left_x, bbox_top_left_y), (bbox_bottom_right_x, bbox_bottom_right_y),bbox_color, bbox_thickness)# 写框类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细img_bgr = cv2.putText(img_bgr, bbox_label, (bbox_top_left_x + bbox_labelstr['offset_x'],bbox_top_left_y + bbox_labelstr['offset_y']),cv2.FONT_HERSHEY_SIMPLEX, bbox_labelstr['font_size'], bbox_color,bbox_labelstr['font_thickness'])cv2.imwrite("E:\\test\\tianjingulou\\{}.jpg".format(img_names[i]), img_bgr)

写在最后,matplotlib的方式应该也有解决的办法,也可能是我的环境问题,提供这两种方式大家各取所需,下面这种方式是我从一位博主那里拷贝来稍加改动的,但是我找不到出处了,如有侵权请联系我删除。

----------------------------------------------华丽分割-------------------------------------------------
追加一种类似的写法,这个是宋体,字体可以酌情替换,亲测可用

import cv2
import os
import matplotlib.pyplot as plt
import xml.etree.ElementTree as ET
import numpy as np# 导入 PIL 库
import PIL.Image
import PIL.ImageDraw
import PIL.ImageFontdata_path = os.path.join("E:\\test\\tianjingulou")
imgs_path = os.path.join(data_path, "img")
anns_path = os.path.join(data_path, "xml")# 获取图像名称和标注名称
img_names = set(os.path.splitext(i)[0] for i in os.listdir(imgs_path))
ann_names = set(os.path.splitext(i)[0] for i in os.listdir(anns_path))
img_names = list(img_names)
ann_names = list(ann_names)# 遍历所有图像
for i, img_name in enumerate(img_names):# 读取图像img_bgr = cv2.imread(os.path.join(imgs_path, img_name + ".jpg"))# 读取标注xml_path = os.path.join(anns_path, img_name + ".xml")xml_inf = open(xml_path, encoding='utf-8')tree = ET.parse(xml_inf)root = tree.getroot()# 画框for obj in root.iter('object'):# 获取框的类别bbox_label = obj.find('name').text# 获取框的两点坐标bbox_top_left_x = int(obj.find('bndbox').find('xmin').text)bbox_top_left_y = int(obj.find('bndbox').find('ymin').text)bbox_bottom_right_x = int(obj.find('bndbox').find('xmax').text)bbox_bottom_right_y = int(obj.find('bndbox').find('ymax').text)# 画矩形img_bgr = cv2.rectangle(img_bgr, (bbox_top_left_x, bbox_top_left_y), (bbox_bottom_right_x, bbox_bottom_right_y),(255, 129, 0), 2)# 写框类别文字# 转换为 PIL 图像img_pil = PIL.Image.fromarray(img_bgr)# 使用 PIL 绘制文本font = PIL.ImageFont.truetype("simsun.ttc", 16)draw = PIL.ImageDraw.Draw(img_pil)draw.text((bbox_top_left_x, bbox_top_left_y - 18), bbox_label, font=font, fill=(255, 129, 0))# 直接使用 PIL 图像img_bgr = np.array(img_pil)# 保存图像cv2.imwrite(data_path + "\\{}.jpg".format(img_name), img_bgr)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/227234.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于linux系统的Tomcat+Mysql+Jdk环境搭建(三)centos7 安装Tomcat

Tomcat下载官网: Apache Tomcat - Which Version Do I Want? JDK下载官网: Java Downloads | Oracle 中国 如果不知道Tomcat的哪个版本应该对应哪个版本的JDK可以打开官网,点击Whitch Version 下滑,有低版本的,如…

Flutter实现Android拖动到垃圾桶删除效果-Draggable和DragTarget的详细讲解

文章目录 Draggable介绍构造函数参数说明使用示例 DragTarget 介绍构造函数参数说明使用示例 DragTarget 如何接收Draggable传递过来的数据? Draggable介绍 Draggable是Flutter框架中的一个小部件,用于支持用户通过手势拖动一个子部件。它是基于手势的一…

知识付费小程序开发:技术实践示例

随着知识付费小程序的兴起,让我们一起来看一个简单的示例,使用Node.js和Express框架搭建一个基础的知识付费小程序后端。 首先,确保你已经安装了Node.js和npm。接下来,创建一个新的项目文件夹,然后通过以下步骤创建你…

适用于 Windows 和 Mac 的 10 款最佳照片恢复软件(免费和付费)

丢失照片很容易。这里点击错误,那里贴错标签的 SD 卡,然后噗的一声,一切都消失了。值得庆幸的是,在技术领域,你可以纠正一些错误。其中包括删除数据或格式化错误的存储设备。 那么,让我们看看可用于从 SD …

[c++]—vector类___提升版(带你了解vector底层的运用)

我写我 不论主谓宾 可以反复错 🌈vector的介绍 1.vector是表示可变大小数组的序列容器2.就像数组一样,vector也采用的连续存储空间来存储元素,也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组&…

工业性能CCD图像处理+

目录 硬件部分 ​编辑 软件部分 CCD新相机的调试处理(更换相机处理,都要点执行检测来查看图像变化) 问题:新相机拍摄出现黑屏,图像拍摄不清晰,(可以点击图像,向下转动鼠标的滚轮&#xff08…

基于linux系统的Tomcat+Mysql+Jdk环境搭建(一)vmare centos7 设置静态ip和连接MobaXterm

特别注意,Windows10以上版本操作系统需要下载安装VMware Workstation Pro16及以上版本,安装方式此处略。 (可忽略 my*** 记录设置的vamare centos7 账号root/aaa 密码:Aa123456 ) 1、命令行和图形界面切换 如果使用的是VMware虚拟机&…

金智融门户(统一身份认证)同步数据至钉钉通讯录

前言:因全面使用金智融门户和数据资产平台,二十几个信息系统已实现统一身份认证和数据同步,目前单位使用的钉钉尚未同步组织机构和用户信息,职工入职、离职、调岗时都需要手工在钉钉后台操作,一是操作繁琐,二是钉钉通讯录更新不及时或经常遗漏,带来管理问题。通过金智融…

CAD 审图意见的导出

看图的时候喜欢在图上直接标注意见,但是如果还要再把意见一行一行的导出到word里面就很麻烦,在网上看了一个审图软件,报价要980,而且那个审图意见做的太复杂了。 我的需求就是把图上标的单行文字和多行文字直接导出来就行&#x…

debug点f8step over会进入class文件

File->settings->Bulid.Executiong.Deployment->Debugger->Stepping 取消如图对钩即可

二十七、读写文件

二十七、读写文件 27.1 文件类QFile #include <QCoreApplication>#include<QFile> #include<QDebug>int main(int argc, char *argv[]) {QCoreApplication a(argc, argv);QFile file("D:/main.txt");if(!file.open(QIODevice::WriteOnly | QIODe…

three.js模拟太阳系

地球的旋转轨迹目前设置为了圆形&#xff0c;效果&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"></div><div c…

idea第一次提交到git(码云)

1.先创建一个仓库 2.将idea和仓库地址绑定 2.将idea和仓库地址绑定

CentOS 7系统加固详细方案SSH FTP MYSQL加固

一、删除后门账户 修改强口令 1、修改改密码长度需要编译login.defs文件 vi /etc/login.defs PASS_MIN_LEN 82、注释掉不需要的用户和用户组 或者 检查是否存在除root之外UID为0的用户 使用如下代码&#xff0c;对passwd文件进行检索&#xff1a; awk -F : ($30){print $1) …

『K8S 入门』二:深入 Pod

『K8S 入门』二&#xff1a;深入 Pod 一、基础命令 获取所有 Pod kubectl get pods2. 获取 deploy kubectl get deploy3. 删除 deploy&#xff0c;这时候相应的 pod 就没了 kubectl delete deploy nginx4. 虽然删掉了 Pod&#xff0c;但是这是时候还有 service&#xff0c…

轻松搭建FPGA开发环境:第三课——Vivado 库编译与设置说明

工欲善其事必先利其器&#xff0c;很多人想从事FPGA的开发&#xff0c;但是不知道如何下手。既要装这个软件&#xff0c;又要装那个软件&#xff0c;还要编译仿真库&#xff0c;网上的教程一大堆&#xff0c;不知道到底应该听谁的。所以很多人还没开始就被繁琐的开发环境搭建吓…

电子学会C/C++编程等级考试2021年06月(六级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:逆波兰表达式 逆波兰表达式是一种把运算符前置的算术表达式,例如普通的表达式2 + 3的逆波兰表示法为+ 2 3。逆波兰表达式的优点是运算符之间不必有优先级关系,也不必用括号改变运算次序,例如(2 + 3) * 4的逆波兰表示法为* +…

智能优化算法应用:基于动物迁徙算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于动物迁徙算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于动物迁徙算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.动物迁徙算法4.实验参数设定5.算法结果6.…

不同的葡萄酒瓶盖会影响葡萄酒饮用的体验

首先&#xff0c;不同的葡萄酒瓶盖会影响我们找到想要喝的葡萄酒的难易程度。螺旋盖、Zork瓶塞和起泡酒“蘑菇形瓶塞”赢得了直接的满足感&#xff0c;它们只需要拔瓶塞不需要开瓶器。来自云仓酒庄品牌雷盛红酒分享对于所有其他的酒瓶封口&#xff0c;我们都需要一个工具来打开…

论文阅读——Mask DINO(cvpr2023)

DINO是检测&#xff0c;Mask DINO是检测分割。 几个模型对比&#xff1a; 传统的检测分割中&#xff0c;检测头和分割头是平行的&#xff0c;Mask DINO使用二分图匹配bipartite matching提高匹配结果的准确性。 box对大的类别不计算损失&#xff0c;因为太大了&#xff0c;会…