初级数据结构(五)——树和二叉树的概念

    文中代码源文件已上传:数据结构源码

 <-上一篇 初级数据结构(四)——队列        |        NULL 下一篇->

1、树结构(Tree)

1.1、树结构的特点

        自然界中的树由根部开始向上生长,随机长出分支,分支之上又可长出分支,层层递进,直至长出叶子则此分支结束。

        数据结构中“树”的概念便是借鉴大自然中的树,将下图垂直镜像翻转便是如此,只是在画结构图时往往更习惯由上向下画。它从根节点开始不断长出分支,直至终端。与自然中的树不同点在于,随着数据后续插入,树结构的叶子节点也可能变为分支节点。

        尤其需要注意,不同分支上的节点不可互相交织。下图中红色线条连接到其他分支的节点,这就不属于树结构:

        总之,树是若干个节点的有限集,有且仅有一个根节点。树的分支数量可以任意多,也可以不包含分支仅有一个根节点甚至没有节点(没有节点的树称为空树)。不同分支的节点互不相交。

1.2、常用名词

         在了解树结构特点的同时,为了后续使用该结构时方便描述,还应了解几个名词。

        节点( Node ):树中的每一个元素称为节点,上图中每个圆圈都代表一个节点;

        根节点( Root ):最初的节点称为根节点,如上图中的 A ;

        子树( Subtree ):每个节点除开自身,将下一级节点当作新的根节点,从新的根节点往下所有节点的集合称为该节点的子树。上图中 B 及往后的节点是 A 的子树, F 又是 B 的子树(所以树是递归结构);

        分支节点( Branch ):能够延申出其他节点的节点(度不为 0 的节点)都称作分支节点,如上图中红色及蓝色标识的节点都属于分支节点;

        终端节点、叶子节点( Leaf ):不包含任何分支节点的节点(度为 0 的节点)称为终端节点或者叶子节点。上图中绿色标识的节点属于叶子节点;

        度( Degree ):一个节点的分支数量叫作该节点的度,如上图 E 有两个分支 K 和 L ,所以 E 的度是 2 。一棵树中所有节点的度的最大值就是这棵树的度,上图中度最大的节点是 J , 有 4 个度,所以这棵树的度也是 4 ;

        层次( Level ):从树或者子树的顶层到最底层的顺序进行排序。在这个顺序中,每个节点都被视为位于树的某个层次上。最顶上可以视为第 0 层,也可以视作第 1 层。

        深度、高度(Depth):最大层次称为这棵树的深度或者高度。如图中的树从根节点开始向下,最多可经 A、D、J、O、S 这 5 个节点( 5 个层次),所以这棵树的深度为 5 ;

        父节点、双亲节点( Parent ):一个节点的上一级节点称为该节点的父节点或者双亲节点。如图中 E 是 K 的父节点,A 是 B 的父节点;

        子节点( Child ):一个节点的下一级节点称为该节点的子节点。图中的 O、P、Q、R 都是 J 的子节点;

        兄弟节点( Sibling ):与某个节点有同一个父节点的节点称为兄弟节点。如图 E、F 都是 G 的兄弟节点;

        祖先节点( Ancestry ):某个节点上数若干级直到根节点,经过的这些节点都称为祖先节点。图中 A、C、H 都是 M 或者 N 的祖先节点;
        子孙节点( Descendant ):一个节点往下的所有节点都称为该节点的子孙节点。如图中 I、J、O、P、Q、R、S 都是 D 的子孙节点;

        堂兄弟节点( Cousin ):与某个节点同一层次除了自身和兄弟节点外其他所有节点称为该节点的堂兄弟节点。如图中 H、I、J 都是 E、F、G 的堂兄弟节点;

        森林( Forest ):若干颗互不相交的树称为森林。图中剔除 A 节点后, B、C、D 子树则构成森林;

        有序树( Ordered Tree ):一棵树中各子树按照一定规律排序不可互换,则称为有序树。如图中如果将这棵树的 A、B、C …… 当作一种顺序,那么可视为有序树;

        无序树( Unordered Tree ):有序树之外的树都称作无序树。

1.3、树的存储方式

        如上图的树结构,如果要在代码中定义其结构体,常规能想到的是除了定义一个储存数据的成员变量外,定义若干个子节点指针。而由于子节点的数量是不确定的,因此将其定义为数组。

typedef int DATATYPE;
typedef struct Node
{DATATYPE data;            //存储数据size_t childCount;        //子节点个数size_t capacity;          //已开辟空间大小struct Node* child[0];    //子节点指针数组
}Node;

        若要找到图中 1-2-2 节点则执行:

root->child[0]->child[1]->child[1];

        但这对于有序树这种不可随意交换节点位置的结构还好,如果是无序树,而且在经常需要交换节点的情况下, 频繁挪动数组元素显得十分不灵活。因此,还有一种储存方式,每个节点仅储存第一个子节点和其下一个兄弟节点的指针。

        在结构体创建上也显得简单,而且无需每次添加数据都检查空间:

typedef int DATATYPE;
typedef struct Node
{DATATYPE data;struct Node* sibling;struct Node* child;
}Node;

        同样是找到 1-2-2 节点:

root->child->child->sibling->child->sibling;

        看似更为复杂,但整个结构在增删数据或者交换数据的操作上跟之前的结构完全不是一个量级。具体过程这里就不展开赘述,实际上就是对链表和顺序表在增删数据或者交换数据操作上的区别。

2、二叉树( Binary Tree )

2.1、节点基本形态

        二叉树是一种特殊的树,每个节点的子节点不超过 2 个,它的度最大为 2  。此外,二叉树是有序树。一般其节点的结构体类型如下:

typedef int DATATYPE;
typedef struct Node
{DATATYPE data;struct Node* left;struct Node* right;
}

        因此,二叉树包含以下五种基本形态: 

        其中,由于二叉树是有序树,所以左分支形态和右分支形态不是同一种结构,代码的表现上也完全不同:

//空
root = NULL;
//无分支
root->left = NULL;
root->right = NULL;
//左分支
root->left = &nodeLeft;
root->right = NULL;
//右分支
root->left = NULL;
root->right = &nodeRight;
//双分支
root->left = &nodeLeft;
root->right = &nodeRight;

2.2、二叉树的特殊形态

2.2.1、斜二叉树

        所有节点的左或者右节点全为空的二叉树称为斜二叉树。斜二叉树每一层有且只有一个节点,节点数等于树的深度。如图。

        斜二叉树可看作是一种非环状单链表,使用上也与单链表无差异。

2.2.2、完全二叉树

        如果二叉树的深度为 n ,根节点处于第 0 层,除了最底层节点,其余每一层中第 L 层节点个数 C_{L} 都满足 C_{L} = 2^{L} ,且底层最右侧节点满足其父节点的左子节点不为空,其堂兄弟节点的父节点度都为 2 ,则这类二叉树称为完全二叉树。如下图。

        上面的描述可能有点过于抽象,可以观察图片,然后用另一种方式概括:

                a、完全二叉树的叶子节点仅存在该二叉树的最底层和次底层;

                b、最底层的叶子节点无空隙地紧密排列在左边部分,右边部分可以为空;

                c、次底层的叶子节点无空隙地紧密排列在这一层右侧;

                d、次底层节点的度为 1 时,该节点没有右子节点。

         在同样节点数的二叉树中,不存在其他形态的二叉树深度小于完全二叉树。

2.2.3、满二叉树

        满二叉树是一种特殊的完全二叉树,如图。

        满二叉树的叶子节点只能出现在最下层,每个非叶子节点的分支节点度都为 2 。在所有同深度的二叉树中,满二叉树的节点最多。

2.3、二叉树规律

2.3.1、节点数规律

        二叉树的叶子节点数量总是比度为 2 的节点数多 1 个。

        根据上图可知,叶子节点数量增加总是伴随着度为 2 的节点数增加,而起初只有根节点时,叶子节点数为 1 ,度为 2 的节点数为 0 。因此无论如何增加节点,叶子节点数总是比度为 2 的节点数多 1 个。

2.3.2、完全二叉树标号规律

        将完全二叉树节点如下图编号:

        会发现完全二叉树左子节点编号是其 2 倍,右子节点编号是其 2 倍 +1 (重要性质,下一篇关于堆的内容会用到)。

2.3.3、完全二叉树深度

        已知完全二叉树节点数为 n ,其深度为 (int)log_{2}n+1 。

        根据以下代码可以计算出完全二叉树的深度:

#include <math.h>
#include <stdio.h>int main()
{int nodeCount;scanf("%d", &nodeCount);int depth = (int)(log(nodeCount) / log(2)) + 1;printf("Depth = %d\n", depth);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/226670.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

对自己的博客网站进行DOS攻击

对自己的博客网站进行DOS攻击 先说明一点,别对别人的网站进行ddos/dos攻击(dos攻击一般短时间攻击不下来),这是违法的,很多都有自动报警机制,本篇博客仅用于学习,请勿用于非法用途 安装kaili Linux 进入KALI官网,下载iso镜像文件 vmware新建虚拟机,选择自定义 点击下一步 …

ROS-ROS运行管理-工作空间覆盖;节点、话题、参数名称重名

文章目录 一、工作空间覆盖二、节点名称重名2.1 rosrun设置命名空间与重映射2.2 launch文件设置命名空间与重映射2.3 编码设置命名空间与重映射 三、话题名称设置3.1 rosrun设置话题重映射3.2 launch文件设置话题重映射3.3 编码设置话题名称 四、参数名称设置4.1 rosrun设置参数…

Github与Gitlab

学习目标 能够使用GitHub创建远程仓库并使用能够安装部署GitLab服务器能够使用GitLab创建仓库并使用掌握CI/CD的概念掌握蓝绿部署, 滚动更新,灰度发布的概念 GitHub是目前最火的开源项目代码托管平台。它是基于web的Git仓库&#xff0c;提供公有仓库和私有仓库&#xff0c;但私…

使用Go实现一个百行聊天服务器

前段时间, redis作者不是整了个c语言版本的聊天服务器嘛, 地址, 代码量拢共不过百行. 于是, 心血来潮下, 我也整了个Go语言版本. 简单来说就是实现了一个聊天室的功能. 将所有注释空行都去掉, 刚好100行实现. 废话不多说, 先上代码: package mainimport ("fmt"&quo…

SoC中跨时钟域的信号同步设计(单比特同步设计)

一、 亚稳态 在数字电路中&#xff0c;触发器是一种很常用的器件。对于任意一个触发器&#xff0c;都由其参数库文件规定了能正常使用的“建立时间”&#xff08;Setup time&#xff09;和“保持时间”&#xff08;Hold time &#xff09;两个参数。“建立时间”是指在时钟…

【MySQL学习之基础篇】多表查询

文章目录 1. 多表关系1.1. 一对多1.2. 多对多1.3. 一对一 2. 多表查询概述2.1. 数据准备2.2. 概述 3. 查询的分类3.1. 内连接查询3.2. 外连接查询3.3. 自连接3.3.1. 自连接查询3.3.2. 联合查询 3.4. 子查询3.4.1. 概述3.4.2. 标量子查询3.4.3. 列子查询3.4.4. 行子查询3.4.5. 表…

python+requests+pytest 接口自动化实现

最近工作之余拿公司的项目写了一个接口测试框架&#xff0c;功能还不是很完善&#xff0c;算是抛砖引玉了&#xff0c;欢迎各位来吐槽。 主要思路&#xff1a; ①对 requests 进行二次封装&#xff0c;做到定制化效果 ②使用 excel 存放接口请求数据&#xff0c;作为数据驱动 ③…

LeetCode(60)K 个一组翻转链表【链表】【困难】

目录 1.题目2.答案3.提交结果截图 链接&#xff1a; K 个一组翻转链表 1.题目 给你链表的头节点 head &#xff0c;每 k 个节点一组进行翻转&#xff0c;请你返回修改后的链表。 k 是一个正整数&#xff0c;它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍&#xf…

Modbus转Profinet网关使用方法

Modbus转Profinet网关&#xff08;XD-MDPN100/200&#xff09;是用于将Modbus协议和Profinet协议进行转换并进行通迅的设备。Modbus转Profinet网关&#xff08;XD-MDPN100/200&#xff09;无论是新项目还是改造项目都可轻松配置完成通迅互联。 正确的安装和配置对于确保设备的正…

低代码核心能力详解:简化应用开发的新思路

低代码平台作为一种快速地应用开发解决方法&#xff0c;为中小企业实现数字化转型提供了机会。但是&#xff0c;对于一些刚开始触碰低代码平台的企业来说&#xff0c;了解其核心能力是很重要的。本文将详细分析低代码平台的核心能力&#xff0c;并在挑选低代码平台以前为中小企…

云原生之深入解析OOM和CPU节流

一、前言 使用 Kubernetes 时&#xff0c;内存不足 (OOM) 错误和 CPU 节流是云应用程序中资源处理的主要难题&#xff0c;这是为什么呢&#xff1f;云应用程序中的 CPU 和内存要求变得越来越重要&#xff0c;因为它们与云成本直接相关。通过 limits 和 requests &#xff0c;可…

航带模式拍完之后用重建大师跑出来的模型是弧形的,怎么处理?

答&#xff1a;空三设置-更多设置-定位方式中选择pos高精度&#xff0c;再跑一下看看。 重建大师是一款专为超大规模实景三维数据生产而设计的集群并行处理软件&#xff0c;输入倾斜照片&#xff0c;激光点云&#xff0c;POS信息及像控点&#xff0c;输出高精度彩色网格模型&a…

k8s-Pod

1、Pod 简介&#xff1a; (1) 概念&#xff1a; Pod 是 Kubernetes 中创建和管理的&#xff0c;最小的可部署的计算单元。Pod中存储了一组&#xff08;一个或多个&#xff09;容器&#xff0c;以及怎样运行这些容器的声明&#xff0c;这些容器共享存储、网络和环境&#xff0…

早上好,我的leetcode 【hash】(第二期)

写在前面&#xff1a;坚持才是最难的事情 C代码还是不方便写&#xff0c;改用python了&#xff0c;TAT 文章目录 1.两数之和49. 字母异位词分组128.最长连续序列 1.两数之和 你好&#xff0c;梦开始的地方~ https://leetcode.cn/problems/two-sum/description/?envTypestudy…

《打造第二大脑》—如何构建高效的笔记系统

最近看了一本书&#xff0c;因为我也用Obsidian来记笔记&#xff0c;&#xff08;Obsidian之前有介绍过Obsidian使用教程&#xff08;如何构建你的个人知识库&#xff0c;第二大脑&#xff09;&#xff09;看完这本书后发现里面给的方法跟Obsidian很契合&#xff0c;所以就整理…

STM32单片机输出频率及占空比可调的PWM波

一、测试用环境 STM32F103C8T6&#xff0c;HAL库。 只考虑PWM的频率和占空比两个参数&#xff0c;死区、极性、对齐方式等不做讨论。 二、STM32Cube MX配置 1.PWM原理 上图中&#xff0c;定时器向上计数&#xff0c;当CNT<CCRx时&#xff0c;输出0&#xff0c;当CNT>C…

linux下的strerror和perror处理错误函数

strerror和perror是C语言中用于处理错误信息的函数。 strerror函数&#xff1a; strerror函数用于将错误码转换为对应的错误消息字符串。它接受一个整数参数&#xff0c;通常是由系统调用或库函数返回的错误码&#xff0c;然后返回一个描述该错误的字符串。 函数原型&#xff1…

PrimDiffusion:3D 人类生成的体积基元扩散模型NeurIPS 2023

NeurIPS2023 &#xff0c;这是一种用于 3D 人体生成的体积基元扩散模型&#xff0c;可通过离体拓扑实现明确的姿势、视图和形状控制。 PrimDiffusion 对一组紧凑地代表 3D 人体的基元执行扩散和去噪过程。这种生成建模可以实现明确的姿势、视图和形状控制&#xff0c;并能够在…

化学方程式小程序

brief introduction 相信大家上中学时都会被化学方程式折腾得死去活来&#xff0c;尤其是配平&#xff0c;怎么也算不对数字。于是我写出了这款近200行的自动配平程序&#xff0c;这是不是你们黑暗化学中的一丝光亮呢&#xff1f; usage 正常化学式输入&#xff0c;每一种物…

D33|动态规划!启程!

1.动态规划五部曲&#xff1a; 1&#xff09;确定dp数组&#xff08;dp table&#xff09;以及下标的含义 2&#xff09;确定递推公式 3&#xff09;dp数组如何初始化 4&#xff09;确定遍历顺序 5&#xff09;举例推导dp数组 2.动态规划应该如何debug 找问题的最好方式就是把…