Logistic Regression——逻辑回归

1. 为什么需要逻辑回归     

        在前面学习的线性回归中,我们的预测值都是任意的连续值,例如预测房价。除此之外,还有一个常见的问题就是分类问题,而逻辑回归是一个解决分类问题的模型,其预测值是离散的

        分类问题又包括二分类问题与多分类问题,对于二分类问题来说,预测值只可能是\否即1\0,

        对于多分类问题来说,预测值可能是多个分类中的一个,例如我输入的是一些动物的图片,我想让模型辨认这些是什么动物,我可以设定预测值1代表模型认为输入是一只猫,预测值2代表模型认为输入是一只狗,预测值3代表模型认为输入是一只猪。

2. 二分类逻辑回归

2.1 从线性回归到分类

        如果有这样一个场景,输入x为肿瘤的大小,而需要预测是否是恶性的。接下来我们仍然使用线性回归模型,但如果我们这增设这样一个阈值

                

        这样一来,所有预测值都将变成1或者0,实现了分类的目的

2.2 逻辑回归模型

        对于线性回归的模型来说,其输出值是任意的,常常会远远大于1或者远远小于0,仅仅上述的阈值可能并不会起到作用或者效果很差。

        对此,逻辑回归会先将所有预测值通过sigmoid 函数映射到[0,1]区间,函数表达式和图像如下图

                                                        (z为输入)

        ​​​​​​​        ​​​​​​​        

        sigmoid 函数是一个非线性函数,当x大于0时,输出值大于0.5,当x<0时输出值小于0.5

        最终我们得到逻辑回归的模型如下

        ​​​​​​​        

           h_{\theta }(x)作用是,对于给定的输入变量,通过参数\theta计算输出变量为1的可能性是多少

        

        假如对于一个输入x,最终计算出h_{\theta }(x)=0.7,则模型认为有70%的可能其为正向类(=1),相反负向类的可能性就为1-0.7=0.3

        最后在分类时,再入加上之前的阈值

        所以逻辑回归就是线性回归再嵌套一个非线性的sigmoid函数,其本质还是回归

2.4 决策边界(Decision Boundary

        假如分类这样一些数据,‘x’为1,圈为0

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

        通过建立逻辑回归模型

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

        假设经过训练我们得到了这样一组参数,于是得到嵌套在逻辑回归里的线性回归模型\theta^{\top }X=-3+x_{1}+x_{2},根据逻辑回归的原理当-3+x_{1}+x_{2}>=0时预测1,当-3+x_{1}+x_{2}<0时预测0,于是分隔情况就是-3+x_{1}+x_{2}=0,我们可以画出这个直线

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

        这条线便是模型的决策边界

        如果是这样的数据

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        

        建立逻辑回归模型

        得到参数

        

        同样的原理,得到其决策边界,是一个圆心在原点,半径为1的圆

        

        ​​​​​​​        ​​​​​​​        ​​​​​​​                

2.5 损失函数

2.5.1 为什么不用MSE损失函数

       根据上述的理论可以知道,逻辑回归的和线性回归的本质是一样的。那是不是意味着损失函数也可以用MSE。

        在线性回归中损失函数如下

                                                J(\theta )=\frac{1}{2m}\sum_{i=1}^{m}(h_{\theta }^{i}-y^{i})^{2}

        我们将​​​​​​​带入可以得到

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​J(\theta )=\frac{1}{2m}\sum_{i=1}^{m}(\frac{1}{1+e^{\theta ^{\top }x}}-y)^{2}

        得到的是一个非凸函数(non-convexfunction),这会很大程度上影响梯度下降法寻找全局最小值,很可能停留在在某个局部极小值

2.5.2 对数损失函数

        介于上述问题,对于二分类逻辑回归来说,使用的是对数损失函数。

对于一个样本来说,预测值会有1和0两种情况,对应两个损失值

     

(log一般以e为底)

        ​​​​​​​        ​​​​​​​        

        当实际y=1时,如果预测值h_{\theta }(x)=1,此时预测是完全正确的,代入上式计算误差为0,如果预测值h_{\theta }(x)不为1,代表模型没有100%的把握认为这是正向类的,此时误差会随着h_{\theta }(x)的减小而变大。

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

        当实际y=0时,如果预测值h_{\theta }(x)=0,此时预测是完全正确的,代入上式计算误差为0,如果预测值h_{\theta }(x)不为0,代表模型没有100%的把握认为这是负向类的,此时误差会随着h_{\theta }(x)的增大而变大。

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

        将这两种情况合在一起

        再求和取平均得到最终损失函数表达式

        采用矩阵的形式表达

2.6 梯度下降

 

        矩阵表达式为

        使用梯度下降

        矩阵表达式为

        \theta = \theta -\frac{\alpha }{m}X^{\top }(h-y)

3. 多分类逻辑回归

        多分类逻辑回归的实现依赖于二分类

        将其中一个类标记为正向类,然后将其他类都标记为负向类,得到一个模型h_{\theta }^{1}(x),接着选择另外一个类标记为正向类,然后将其他类都标记为负向类,又得到一个模型h_{\theta }^{2}(x),以此类推,我们可以得到一系列模型,假设有k个类

        h_{\theta }^{i}(x)=p(y=i|x;\theta ),i=(1,2,3,4……k)

        训练好这一系列模型后,对于一个输入x,让其在所有的分类器都得到一个输出,最后选择一个maxh_{\theta }(x)作为最终的输出

4. 逻辑回归的实例

        ex2data1数据集包含100行数据前两列是学生的两种考试的成绩,最后一列是他们被是否录取。需要根据学生的两种考试的成绩来预测他们被是否录取。

1.读取数据集

import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdata = pd.read_csv('ex2data1.txt',names=['exam1','exam2','admitted'])
data.head()

# 根据admitted的值分类
plt.scatter(positive['exam1'],positive['exam2'],marker='o',label='Admitted')
plt.scatter(negative['exam1'],negative['exam2'],marker='x',label='Not Admitted')
plt.xlabel('Exam1 Score')
plt.ylabel('Exam2 Score')
plt.legend()
plt.show()

2.数据预处理

data.insert(0,'ones',1)
X = data.iloc[:,0:-1].values
y = data.iloc[:,-1].values
y = y.reshape(100,1)

3.定义Sigmoid函数

def sigmoid(z):return 1/(1+np.exp(-z))

4.定义损失函数

def lossFunction(X,y,theta):m = len(X)h = sigmoid(X@theta)return (1/m)*np.sum(-y.T@np.log(h)-(1-y).T@np.log(1-h))

5.模型训练

def train(X,y,alpha,epochs):loss_history = []theta = np.random.rand(3,1)for i in range(epochs):m = len(X)h = sigmoid(X@theta)theta = theta - (alpha/m)*X.T@(h-y)current_loss = lossFunction(X,y,theta)loss_history.append(current_loss) if (i+1) % 100 == 0:print("epochs={},current_loss={}".format(i+1,current_loss))# 绘制损失函数图像plt.plot(range(1,epochs+1),loss_history)plt.xlabel('epochs')plt.ylabel('loss')plt.title('Loss Curve')plt.show()return theta# 参数
alpha = 0.1
epochs = 1000
theta = train(X,y,alpha,epochs)

admitted = X[y.flatten() == 1]
not_admitted = X[y.flatten() == 0]
plt.scatter(admitted[:, 1], admitted[:, 2], label='Admitted', marker='o')
plt.scatter(not_admitted[:, 1], not_admitted[:, 2], label='Not Admitted', marker='x')
plt.xlabel('Exam 1 score')
plt.ylabel('Exam 2 score')# 绘制决策边界
plot_x = np.array([min(X[:, 1]) - 2, max(X[:, 1]) + 2])
plot_y = (-1 / theta[2]) * (theta[1] * plot_x + theta[0])
plt.plot(plot_x, plot_y, label='Decision Boundary')
plt.legend()
plt.show()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/226580.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

30天精通Nodejs--第十四天:MongoDB

这里写目录标题 前言什么是 MongoDB?安装 MongoDB 驱动连接到 MongoDB 数据库执行基本操作插入文档查询文档更新文档删除文档使用 Mongoose总结前言 MongoDB 是一款流行的 NoSQL 数据库,为 Node.js 开发者提供了灵活性和可伸缩性。本文将详细介绍在 Node.js 中使用 MongoDB的…

JdbcTemplate能否开启事务?使用Statement手动开启事务

一、需求背景 项目中经常会去对接第三方的数据&#xff0c;将对方的用户组织等信息同步过来&#xff0c;此时会遇到几个问题就是数据量大的时候性能问题&#xff0c;数据部分更新时又该怎么同步&#xff0c;但这些数据基本都有状态和更新时间&#xff0c;根据该两个值去新增和…

如何安装LUT预设?达芬奇/FCP/PR怎么安装LUT预设.cube格式文件的教程

在下载的LUT调色预设压缩文件包中&#xff0c;通常两个包含不同格式的LUT文件&#xff1a; .cube 和 .xmp 包含的 .cube 文件几乎与主流的视频编辑和色彩校正软件兼容&#xff0c;并且还可以在 Adobe Photoshop 等一些照片应用程序中使用。如果主要是将这些 LUT 用于视频剪辑项…

如何搭建Gateway服务

Gateway的简单介绍 Spring Cloud Gateway是Spring Cloud的一个项目&#xff0c;该项目是基于Spring&#xff0c;Spring Boot和Project Reactor等响应式编程和事件流技术开发的网关&#xff0c;它旨在为微服务架构提供一种简单有效的统一的 API 路由管理方式。Gateway网关可以是…

生信算法1 - DNA测序算法实践之序列操作

生信序列基本操作算法 建议在Jupyter实践&#xff0c;python版本3.9 1. 定义DNA序列 seq ACGT# 从序列指定索引的碱基 seq[1] # C# 序列长度 len(seq) # 42. 序列拼接 # 序列拼接 - 字符串 seq1 AACC seq2 GGTT print(seq1 seq2) # AACCGGTT# 序列拼接 - 列表 seqs [A…

持续集成交付CICD:Jenkins使用GitLab共享库实现基于SaltStack的CD流水线部署前后端应用

目录 一、实验 1.Jenkins使用GitLab共享库实现基于SaltStack的CD流水线部署前后端应用 2.优化共享库代码 二、问题 1.Jenkins手动构建后端项目流水线报错 一、实验 1.Jenkins使用GitLab共享库实现基于SaltStack的CD流水线部署前后端应用 &#xff08;1&#xff09;GitLa…

使用Redis构建简单的社交网站

文章目录 第1关&#xff1a;创建用户与动态第2关&#xff1a;处理用户关系第3关&#xff1a;状态与信息流 第1关&#xff1a;创建用户与动态 编程要求 在Begin-End区域编写 create_user(login_name, real_name) 函数&#xff0c;实现创建新用户的功能&#xff0c;具体参数与要…

Rust语言第一篇:我是谁?

Rust 是一种系统级编程语言&#xff0c;专注于安全性、并发性和性能。它由 Mozilla 开发并于 2010 年首次发布。Rust 被设计为一种可靠和高效的编程语言&#xff0c;可用于构建各种类型的软件&#xff0c;从操作系统和嵌入式设备到 Web 应用程序和桌面应用程序。 以下是 Rust …

java.lang.UnsupportedOperationException: null

目的&#xff1a;想使用add()在list集合中加入数据 原因&#xff1a;Arrays的内部类ArrayList没有重写 AbstractList的add和remove方法&#xff0c;直接使用会抛异常 String str "1,2,3,5" String[] ids str.split(","); List<String> list Array…

假如董宇辉是个AI

董宇辉这么质朴、勤奋、爱动感情又有灵气的带货主播&#xff0c;配得上他的上千万粉丝。他是直播带货的一股清流&#xff0c;罕见的品类和物种。 然而&#xff0c;是东方甄选成就了董宇辉&#xff0c;还是董宇辉托起了东方甄选&#xff0c;真是笔说不清的糊涂账。董宇辉为什么…

【javascript】npm ERR! cb() never called!

错误 环境 windows 10 nvm node 14.17.0 如何解决 尝试了 5 种方法 1&#xff0c;npm cache clean --force 2, npm cache verify 3, 删掉package-lock.json &#xff08;然鹅我的这个项目没有这个文件&#xff09; 4, npm set strict-ssl false 5, 删除node_modules 这五种…

Excel中MATCH和INDEX函数的用法详解,以及Vlookup的数组用法

match函数 目的&#xff1a;查询函数&#xff0c;范围单元格中搜索特定的项&#xff0c;然后返回该项在此区域中的相对位置。 For example:让 match 去【隔壁办公室】找【老张】 Match 回复&#xff1a;【老张】坐在【隔壁办公室】第【四】个座位上 公式&#xff1a;【 mat…

【数据库设计和SQL基础语法】--查询数据--聚合函数

一、聚合函数概述 1.1 定义 聚合函数是一类在数据库中用于对多个行进行计算并返回单个结果的函数。它们能够对数据进行汇总、统计和计算&#xff0c;常用于提取有关数据集的摘要信息。聚合函数在 SQL 查询中广泛应用&#xff0c;包括统计总数、平均值、最大值、最小值等。 1…

【FPGA/verilog -入门学习7】 条件判断if与分支判断case语句的语法介绍

需求 使用if 和case 产生格雷码 / /*条件判断if与分支判断case语句的语法介绍 需求 使用if 和case 产生格雷码*/ / timescale 1ns/1ps module vlg_design(input [3:0] i_data, output reg [3:0] o_data,output reg [3:0] o_datac);always (*) begin if (4b0000 i_data) o_d…

Ceph入门到精通-Ceph Pacific 版本磁盘预测模块

磁盘预测模块利用 Ceph 设备运行状况检查来收集磁盘运行状况指标&#xff0c;并使用内部预测器模块生成磁盘故障预测并返回到 Ceph。它不需要任何外部服务器进行数据分析和输出结果。其内部预测器的准确率约为70%。 1. 启用 运行以下命令以在 Ceph 环境中启用diskprediction_…

Go和Java实现代理模式

Go和Java实现代理模式 下面通过一个用户登录的例子来说明代理模式的使用。 1、代理模式 在代理模式中&#xff0c;一个类代表另一个类的功能。这种类型的设计模式属于结构型模式。 在代理模式中&#xff0c;我们创建具有现有对象的对象&#xff0c;以便向外界提供功能接口。…

MySQL数据库 入门

目录 一、MySQL概述 二、MySQL安装 安装数据库 配置数据库 启动停止数据库 客户端连接数据库 三、数据模型 四、SQL 一、MySQL概述 先来讲解三个概念&#xff1a;数据库、数据库管理系统、 SQL 。 而目前主流的关系型数据库管理系统的市场占有率排名如下&#xff1a; …

【从零开始学习--设计模式--代理模式】

返回首页 前言 感谢各位同学的关注与支持&#xff0c;我会一直更新此专题&#xff0c;竭尽所能整理出更为详细的内容分享给大家&#xff0c;但碍于时间及精力有限&#xff0c;代码分享较少&#xff0c;后续会把所有代码示例整理到github&#xff0c;敬请期待。 此章节介绍建…

(第38天)RAC 修改 IP 信息

介绍 在生产中有时候会遇到机房搬迁网络变更、系统上线由测试环境切换为生产环境、系统层面双网卡绑定或者解绑等情况。Oracle RAC 环境下应该如何操作?首先,我们都知道 Oracle RAC 中的 IP 主要有:Public IP、Virtual IP、SCAN IP、Private IP 这几种,接下来分别讲解这几…

C语言算法与数据结构,旅游景区地图求最短路径

背景&#xff1a; 本次作业要求完成一个编程项目。请虚构一张旅游景区地图&#xff0c;景区地图包括景点&#xff08;结点&#xff09;和道路&#xff08;边&#xff09;&#xff1a;地图上用字母标注出一些点&#xff0c;表示景点&#xff08;比如&#xff0c;以点 A、B、C、…