【C语言(十五)】

动态内存管理

一、为什么要有动态内存分配? 

我们已经掌握的内存开辟方式有:

int val = 20 ; // 在栈空间上开辟四个字节
char arr[ 10 ] = { 0 }; // 在栈空间上开辟 10 个字节的连续空间

但是上述的开辟空间的方式有两个特点: 

空间开辟大小是固定的。
数组在申明的时候,必须指定数组的长度,数组空间⼀旦确定了大小不能调整
但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知
道,那数组的编译时开辟空间的方式就不能满足了。
C语⾔引入了动态内存开辟,让程序员自己可以申请和释放空间,就比较灵活了。

二、malloc和free

2.1、malloc 

 C语言提供了⼀个动态内存开辟的函数:

这个函数向内存申请⼀块连续可用的空间,并返回指向这块空间的指针。

如果开辟成功,则返回⼀个指向开辟好空间的指针。
如果开辟失败,则返回⼀个 NULL 指针,因此malloc的返回值⼀定要做检查。
返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器

2.2、free 

C语言提供了另外⼀个函数free,专门是用来做动态内存的释放和回收的,函数原型如下: 

void free (void* ptr); 

free函数用来释放动态开辟的内存。 

如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
如果参数 ptr 是NULL指针,则函数什么事都不做。
malloc和free都声明在 stdlib.h 头文件中。

举个例子:

#include <stdio.h>
#include <stdlib.h>int main()
{int num = 0;scanf("%d", &num);int arr[num] = { 0 };int* ptr = NULL;ptr = (int*)malloc(num * sizeof(int));if (NULL != ptr)//判断ptr指针是否为空{int i = 0;for (i = 0; i < num; i++){*(ptr + i) = 0;}}free(ptr);//释放ptr所指向的动态内存ptr = NULL;//是否有必要?return 0;
}

三、calloc和realloc 

3.1、calloc 

C语言还提供了⼀个函数叫 calloc calloc 函数也用来动态内存分配。原型如下: 

void* calloc (size_t num, size_t size); 

函数的功能是为 num 个大小为 size 的元素开辟⼀块空间,并且把空间的每个字节初始化为0。
与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。

举个例子:

#include <stdio.h>
#include <stdlib.h>int main()
{int* p = (int*)calloc(10, sizeof(int));if (NULL != p){int i = 0;for (i = 0; i < 10; i++){printf("%d ", *(p + i));}}free(p);p = NULL;return 0;
}

输出结果:

所以如果我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。 

3.2、realloc

realloc函数的出现让动态内存管理更加灵活。
有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的使用内存,我们⼀定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小 的调整。

函数原型如下:

void * realloc ( void * ptr, size_t size);
ptr 是要调整的内存地址
size 调整之后新大小
返回值为调整之后的内存起始位置。
这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到 的空间。
realloc在调整内存空间的是存在两种情况:
        ◦ 情况1:原有空间之后有足够大的空间
        ◦ 情况2:原有空间之后没有足够大的空间

情况1

当是情况1的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。

在已经开辟好的空间后边,没有足够的空间,直接进行空间的扩大,在这种情况下,realloc函数会在内存的堆区重新找一个空间(满足新的空间的大小需求的),同时会把旧的数据拷贝到新的新空间,然后释放旧的空间,同时返回新的空间的起始地址。

情况2

当是情况2的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找⼀个合适大小的连续空间来使用。这样函数返回的是⼀个新的内存地址。

在已经开辟好的空间后边,有足够的空间,直接进行扩大,扩大空间后,直接返回旧的空间的起始地址!

由于上述的两种情况,realloc函数的使用就要注意⼀些。

#include <stdio.h>
#include <stdlib.h>int main()
{int* ptr = (int*)malloc(100);if (ptr != NULL){//业务处理}else{return 1;}//扩展容量//代码1 - 直接将realloc的返回值放到ptr中ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)//int* p = (int*)realloc(NULL,40);//等价于malloc//代码2 - 先将realloc函数的返回值放在p中,不为NULL,在放ptr中int* p = NULL;p = realloc(ptr, 1000);if (p != NULL){ptr = p;}//业务处理free(ptr);return 0;
}

malloc/calloc/realloc 申请的空间

如果不主动释放,出了作用域是不会销毁的

释放的方式:
1. free主动释放
2.直到程序结束,才由操作系统回收

四、常见的动态内存错误

4.1、对NULL指针的解引用操作

void test()
{int *p = (int *)malloc(INT_MAX/4);*p = 20;//如果p的值是NULL,就会有问题free(p);
}

4.2、对动态开辟空间的越界访问

void test()
{int i = 0;int* p = (int*)malloc(10 * sizeof(int));if (NULL == p){exit(EXIT_FAILURE);}for (i = 0; i <= 10; i++){*(p + i) = i;//当i是10的时候越界访问}free(p);
}

 4.3、对非动态开辟内存使用free释放

void test()
{int a = 10;int* p = &a;free(p);//ok?
}

4.4、使用free释放一块动态开辟内存的一部分

void test()
{int* p = (int*)malloc(100);p++;free(p);//p不再指向动态内存的起始位置
}

4.5、对同一块动态内存多次释放

void test()
{int* p = (int*)malloc(100);free(p);free(p);//重复释放
}

 4.6、动态开辟内存忘记释放(内存泄漏)

void test()
{int* p = (int*)malloc(100);if (NULL != p){*p = 20;}
}int main()
{test();while (1);
}

忘记释放不再使用的动态开辟的空间会造成内存泄漏。

切记:动态开辟的空间一定要释放,并且正确释放。

五、动态内存经典笔试题分析 

5.1、题目1: 

void GetMemory(char* p)
{p = (char*)malloc(100);
}void Test(void)
{char* str = NULL;GetMemory(str);strcpy(str, "hello world");printf(str);
}

请问运行Test函数会有什么样的结果?

1.GetMemory函数采用值传递的方式,无法将malloc开辟空间的地址,返回放在str中,调用结束后str依然是NULL指针。

2. strcpy中使用了str,就是对NULL指针解引用操作,程序崩溃。

3.内存泄露。

5.2、题目2: 

char* GetMemory(void)
{char p[] = "hello world";return p;
}void Test(void)
{char* str = NULL;str = GetMemory();printf(str);
}

5.3、题目3: 

void GetMemory(char** p, int num)
{*p = (char*)malloc(num);
}void Test(void)
{char* str = NULL;GetMemory(&str, 100);strcpy(str, "hello");printf(str);
}

这个题目大体上是没问题的,唯独缺少了最后的释放空间和指针置空。 

5.4、题目4:

void Test(void)
{char* str = (char*)malloc(100);strcpy(str, "hello");free(str);//str就是野指针if (str != NULL){strcpy(str, "world");//非法访问printf(str);}
}

以上的代码只有在使用完指针后将指针所指的空间释放,而并没有将指针置空。 

六、柔性数组 

也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。
C99中,结构中的最后⼀个元素允许是未知大小的数组,这就叫做『柔性数组』成员。

例如:

struct st_type
{int i;int a[0];//柔性数组成员
}type_a;

有些编译器会报错无法编译可以改成:

struct st_type
{int i;int a[];//柔性数组成员
}type_a;

 6.1、柔性数组的特点:

结构中的柔性数组成员前面必须至少⼀个其他成员。
sizeof 返回的这种结构大小不包括柔性数组的内存。
包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。

例如:

typedef struct st_type
{int i;int a[0];//柔性数组成员
}type_a;int main()
{printf("%d\n", sizeof(type_a));//输出的是4return 0;
}

6.2、柔性数组的使用 

//代码1
#include <stdio.h>
#include <stdlib.h>int main()
{int i = 0;type_a* p = (type_a*)malloc(sizeof(type_a) + 100 * sizeof(int));//业务处理p->i = 100;for (i = 0; i < 100; i++){p->a[i] = i;}free(p);return 0;
}

 这样柔性数组成员a,相当于获得了100个整型元素的连续空间。

6.3、柔性数组的优势 

上述的 type_a 结构也可以设计为下面的结构,也能完成同样的效果。 

//代码2
#include <stdio.h>
#include <stdlib.h>typedef struct st_type
{int i;int* p_a;
}type_a;int main()
{type_a* p = (type_a*)malloc(sizeof(type_a));p->i = 100;p->p_a = (int*)malloc(p->i * sizeof(int));//业务处理for (int i = 0; i < 100; i++){p->p_a[i] = i;}//释放空间free(p->p_a);p->p_a = NULL;free(p);p = NULL;return 0;
}

上述 代码1 和 代码2 可以完成同样的功能,但是 方法1 的实现有两个好处:

第一个好处是:方便内存释放
如果我们的代码是在⼀个给别⼈用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存⼀次性分配好了,并返回给用户⼀个结构体指针,用户做⼀次free就可以把所有的内存也给释放掉。

第二个好处是:这样有利于访问速度
连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)

拓展阅读:C语言结构体里的数组和指针

七、总结C/C++中程序内存区域划分 

 C/C++程序内存分配的几个区域:

1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。
2. 堆区(heap):⼀般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。分配方式类似于链表。
3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。
4. 代码段:存放函数体(类成员函数和全局函数)的⼆进制代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/226111.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

camera卷帘快门(Rolling Shutter)与全局快门(Global Shutter)

首先来看一下什么叫快门&#xff1a; 快门是照相机用来控制感光元件有效曝光时间的装置。可以理解为光线要想打到相机传感器上必经的一道门。如果快门关着&#xff0c;那么光线进不去&#xff0c;感光元件就无法曝光&#xff1b;门开了&#xff0c;光线进来了&#xff0c;感光元…

FlinkSQL中的窗口

多维分析 需求&#xff1a;有一张test表&#xff0c;表的字段为&#xff1a;A, B, C, amount, 其中A, B, C为维度字段&#xff0c;求以三个维度任意组合&#xff0c;统计sum(amount) Union方案&#xff1a; A, B, C的任意组合共有8种&#xff0c;分别为&#xff08;A, B,C,AB…

C语言:指针与数组易错辨析

前言&#xff1a; 在学校学习指针和数组的联系时&#xff0c;对指针与数组的结合产生了很大的疑惑&#xff0c;后来不断查找资料&#xff0c;本人对指针与数组的综合有了一定的理解&#xff0c;现进行综合讨论辨析 数组指针&#xff1a; 数组指针&#xff0c;即为指向数组类…

机器学习中数据的特征表示

在实际应用中&#xff0c;数据的类型多种多样&#xff0c;比如文本、音频、图像、视频等。不同类型的数据&#xff0c;其原始特征的空间也不相同。比如一张灰度图像&#xff08;像素数量为 &#x1d437;&#xff09;的特征空间为 [0, 255]&#x1d437;&#xff0c;一个自然语…

深入理解 hash 和 history:网页导航的基础(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

二维差分详解

前言 上一期我们分享了一维差分的使用方法&#xff0c;这一期我们将接着上期的内容带大家了解二位差分的使用方法&#xff0c;话不多说&#xff0c;LET’S GO!&#xff08;上一期链接&#xff09; 二维差分 二维差分我们可以用于对矩阵区间进行多次操作的题。 二维差分我们还…

springAop有哪五种通知类型?可根据图标查看!

Spring AOP的通知类型有以下几种&#xff08;后面是图标变化&#xff09;&#xff1a; 1.Before通知&#xff1a; 在目标方法执行前执行。 上白下红&#xff0c;方法前执行。 2.After通知&#xff1a; 在目标方法执行后&#xff08;无论是否发生异常&#xff09;执行。 图标…

文件操作(一、fgets和fputs、fscanf和fprintf、fread 和 fwrite、fopen和fclose、fgetc和fputc)

目录 一、文件的概念 1. 什么是文件&#xff1f;​ 2. 为什么使用文件&#xff1f;​ 3.分件的分类 3.1 程序文件​ 3.2 数据文件​ 3.3磁盘文件: 3.4设备文件: 4.文件名​ 二、二进制文件和文本文件&#xff1f;​ 文本文件与二进制文件区别 三、流和标准流 3.1流…

记录一下github深度学习的错误

1.[visdom]无法正常启动服务问题解决 在Anaconda命令窗口中&#xff1a; 使用python -m visdom.server启动visdom服务时&#xff0c;卡在&#xff1a; Checking for scripts. Downloading scripts, this may take a little while 无法下载和启动服务。 ERROR&#xff1a;由…

设计模式-策略(Strategy)模式

又被称为政策&#xff08;方针&#xff09;模式策略模式(Strategy Design Pattern)&#xff1a;封装可以互换的行为&#xff0c;并使用委托来决定要使用哪一个策略模式是一种行为设计模式&#xff0c;它能让你定义一系列算法&#xff0c;并将每种算法分别放入独立的类中&#x…

[MySQL]数据库概述

目录 1.什么是数据库 2.数据库分类 2.1关系型数据库 2.2非关系型数据库 1.什么是数据库 我们知道&#xff0c;存储数据可以使用文件来存储。那么为什么我们还要大费周章的去设计和使用数据库呢&#xff1f; 因为文件保存数据有以下几个缺点&#xff1a; 1.文件的安全性不…

浅谈MapReduce

MapReduce是一个抽象的分布式计算模型&#xff0c;主要对键值对进行运算处理。用户需要提供两个自定义函数&#xff1a; map&#xff1a;用于接受输入&#xff0c;并生成中间键值对。reduce&#xff1a;接受map输出的中间键值对集合&#xff0c;进行sorting后进行合并和数据规…

clickhouse函数记录

日期函数 SELECT formatDateTime(create_time,%Y-%m-%d) AS time FROM xx.xx;

安路IP核应用举例(OSC、UART)

1.OSC(内部振荡器) 按照Project->New Project顺序新建工程后&#xff0c;后按照Tools->IP Generator顺序&#xff0c;创建IP核&#xff0c;如下图&#xff1a; 安路FPGA的内置OSC振荡模块频率可选30MHz、60MHz。 可选Verilog或VHDL语言。 如图&#xff0c;生成的.v文件只…

【Linux】内核结构

一、Linux内核结构介绍 Linux内核结构框图 二、图解Linux系统架构 三、驱动认知 1、为什么要学习写驱动2、文件名与设备号3、open函数打通上层到底层硬件的详细过程 四、Shell Shell脚本 一、Linux内核结构介绍 Linux 内核是操作系统的核心部分&#xff0c;它负责管理系…

“Java 已死、前端已凉”?技术变革与编程语言前景:Java和前端的探讨

前端已死话题概论 本文讨论了近期IT圈中流传的“Java 已死、前端已凉”言论。我们审视了这些言论的真实性&#xff0c;并深入探讨了技术行业的演变和新兴技术的出现对编程语言和前端开发的影响。通过分析历史发展、当前趋势和未来展望&#xff0c;我们提供了对这些话题更深层次…

HBuilderX 配置 夜神模拟器 详细图文教程

在电脑端查看App的效果&#xff0c;不用真机调试&#xff0c;下载一个模拟器就可以了 --- Nox Player&#xff0c;夜神模拟器&#xff0c;是一款 Android 模拟器。他的使用非常安全&#xff0c;最重要的是完全免费。 一. 安装模拟器 官网地址&#xff1a; (yeshen.com) 二.配…

探索性能测试的奥秘:流程与工具大揭秘!

一、性能测试 性能测试是通过自动化的测试工具模拟多种正常、峰值以及异常负载条件来对系统的各项性能指标进行测试。 1.1 类别 性能测试包括负载测试、压力测试、基准测试等。 1.1.1 负载测试 通过测试系统在资源超负荷情况下的表现&#xff0c;以发现设计上的错误或验证…

【MYSQL】事务隔离级别、脏读、不可重复读、幻读

文章目录 介绍演示脏读不可重复读可重复读幻读 不可重复读和幻读的区别 参考 作者 Guide: 事务隔离级别 美团技术团队&#xff1a; Innodb中的事务隔离级别和锁的关系 介绍 SQL 标准定义了四个隔离级别&#xff1a; READ-UNCOMMITTED(读取未提交) &#xff1a;最低的隔离级别…

论文阅读——Semantic-SAM

Semantic-SAM可以做什么&#xff1a; 整合了七个数据集&#xff1a; 一般的分割数据集&#xff0c;目标级别分割数据集&#xff1a;MSCOCO, Objects365, ADE20k 部分分割数据集&#xff1a;PASCAL Part, PACO, PartImagenet, and SA-1B The datasets are SA-1B, COCO panopt…