【LangChain】Prompts之Prompt templates

Prompts

编程模型的新方法是通过提示(prompts)。
prompts是指模型的输入。该输入通常由多个组件构成。 LangChain 提供了多个类和函数,使构建和使用prompts变得容易。

  • Prompt templates(提示模板): 参数化模型输入
  • Example selectors(选择器示例): 动态选择要包含在提示中的示例

prompt 翻译:提示

Prompt templates

语言模型将文本作为输入 - 该文本通常称为prompt

通常,这不仅仅是一个硬编码字符串,而是模板、一些示例和用户输入的组合
LangChain 提供了多个类和函数,使构建和使用prompts变得容易。

什么是提示模板?(What is a prompt template?)

prompt template是指生成提示的可重复的方式。它包含一个文本字符串(“模板”),可以接收来自最终用户的一组参数并生成提示。

提示模板包含:

  • 对语言模型的指令,
  • 一组几个镜头示例来帮助语言模型生成更好的响应,
  • 对语言模型的一个问题。

这是最简单的例子:

from langchain import PromptTemplatetemplate = """\
您是新公司的命名顾问。
生产{product}的公司起什么好名字?
"""prompt = PromptTemplate.from_template(template)
prompt.format(product="彩色袜子")

结果:

您是新公司的命名顾问。
一家生产彩色袜子的公司起什么名字好呢?

创建提示模板(Create a prompt template)

您可以使用 PromptTemplate 类创建简单的硬编码提示。提示模板可以采用任意数量的输入变量,并且可以格式化以生成提示。

from langchain import PromptTemplate# 没有输入变量的示例提示
no_input_prompt = PromptTemplate(input_variables=[], template="给我讲个笑话。")
no_input_prompt.format()
# -> "给我讲个笑话。"# 带有一个输入变量的示例提示
one_input_prompt = PromptTemplate(input_variables=["adjective"], template="给我讲一个{adjective}笑话。")
one_input_prompt.format(adjective="有趣")
# -> "给我讲一个有趣的笑话。"# 具有多个输入变量的示例提示
multiple_input_prompt = PromptTemplate(input_variables=["adjective", "content"], template="给我讲一个关于{content}的{adjective}笑话。"
)
multiple_input_prompt.format(adjective="funny", content="chickens")
# -> "给我讲一个关于鸡的有趣笑话。"

如果您不想手动指定 input_variables,您还可以使用 from_template 类方法创建 PromptTemplate。 langchain 将根据传递的模板自动推断 input_variables

template = "给我讲一个关于{content}的{adjective}笑话。"prompt_template = PromptTemplate.from_template(template)
prompt_template.input_variables
# -> ['adjective', 'content']
prompt_template.format(adjective="funny", content="chickens")
# -> 给我讲一个关于鸡的有趣笑话。

您可以创建自定义提示模板,以您想要的任何方式格式化提示。有关更多信息,请参阅自定义提示模板。

聊天提示模板(Chat prompt template)

聊天模型将聊天消息列表作为输入 - 该列表通常称为提示(prompt)。这些聊天消息与原始字符串(您将传递到 LLM 模型中)不同,因为每条消息都与一个角色关联。

例如,在 OpenAI 的Chat Completion API中,聊天消息可以与 AI、人类或系统角色相关联。该模型会更紧密地遵循系统聊天消息的指令。

LangChain 提供了多种提示模板,可以轻松构建和使用提示。官方鼓励在查询聊天模型时使用这些聊天相关的提示模板而不是 PromptTemplate,以充分利用底层聊天模型的潜力。

from langchain.prompts import (ChatPromptTemplate,PromptTemplate,SystemMessagePromptTemplate,AIMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.schema import (AIMessage,HumanMessage,SystemMessage
)

要创建与角色关联的消息模板,请使用 MessagePromptTemplate

为了方便起见,模板上公开了一个 from_template 方法。如果您要使用此模板,它将如下所示:

template="您是将 {input_language} 翻译成 {output_language} 的得力助手。"
# 创建角色:系统的模板
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
# 创建角色:人类的模板
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

如果你想更直接地构造MessagePromptTemplate,你也可以在外部创建一个PromptTemplate,然后将其传入,例如:

# 创建一个常规的模板
prompt=PromptTemplate(template="您是将 {input_language} 翻译成 {output_language} 的得力助手。",input_variables=["input_language", "output_language"],
)
# 再创建一个角色:系统 的模板
system_message_prompt_2 = SystemMessagePromptTemplate(prompt=prompt)
# 判断和之前创建的是否一样
assert system_message_prompt == system_message_prompt_2

之后,您可以从一个或多个 MessagePromptTemplate 构建 ChatPromptTemplate

我们可以使用 ChatPromptTemplateformat_prompt ——这会返回一个 PromptValue,您可以将其转换为字符串或 Message 对象,具体取决于您是否想要使用格式化值作为 llm 或聊天模型的输入。

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])# 从格式化消息中获取聊天完成信息
chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages()

结果:

    [SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}),HumanMessage(content='I love programming.', additional_kwargs={})]

总结

本篇主要讲述:

  1. 如何创建模板提示

方式一:PromptTemplate(input_variables=[], template="Tell me a joke.")

方式二:template = "Tell me a {adjective} joke about {content}." prompt_template = PromptTemplate.from_template(template),这种不用写input_variables

  1. 如何创建messageTemplate,我们常常需要与角色相关联:

角色有:

  • AI(AIMessagePromptTemplate)、
  • 人类(HumanMessagePromptTemplate)、
  • 系统(SystemMessagePromptTemplate)。

最后利用ChatPromptTemplate.from_messages(xxx)方法,整合这些角色,就构造出了,聊天机器人。

总结

https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/22600.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EventBus 开源库学习(一)

一、概念 EventBus是一款在 Android 开发中使用的发布-订阅事件总线框架,基于观察者模式,将事件的接收者和发送者解耦,简化了组件之间的通信,使用简单、效率高、体积小。 一句话:用于Android组件间通信的。 二、原理…

TypeScript最新语法总结

注意注意!!!本文介绍的是最新的TypeScript4的重要语法 第一部分:TypeScript的简介 TypeScript 是由微软开发的一款开源的编程语言,TypeScript 是 Javascript 的超集,遵循最新的 ES6、ES5 规范&#xff0c…

做好“关键基础设施提供商”角色,亚马逊云科技加快生成式AI落地

一场关于生产力的革命已在酝酿之中。全球管理咨询公司麦肯锡在最近的报告《生成式人工智能的经济潜力:下一波生产力浪潮》中指出,生成式AI每年可能为全球经济增加2.6万亿到4.4万亿美元的价值。在几天前的亚马逊云科技纽约峰会中,「生成式AI」…

动手学深度学习(二)线性神经网络

推荐课程:跟李沐学AI的个人空间-跟李沐学AI个人主页-哔哩哔哩视频 回归任务是指对连续变量进行预测的任务。 一、线性回归 线性回归模型是一种常用的统计学习方法,用于分析自变量与因变量之间的关系。它通过建立一个关于自变量和因变量的线性方程&…

分布式协议与算法——拜占庭将军问题

拜占庭将军问题 背景:以战国时期为背景 战国时期,齐、楚、燕、韩、赵、魏、秦七雄并立,后来秦国的势力不断强大起来,成了东方六国的共同威胁。于是,这六个国家决定联合,全力抗秦,免得被秦国各个…

JVM面试突击1

JVM面试突击 JDK,JRE以及JVM的关系 我们的编译器到底干了什么事? 仅仅是将我们的 .java 文件转换成了 .class 文件,实际上就是文件格式的转换,对等信息转换。 类加载机制是什么? 所谓类加载机制就是 虚拟机把Class文…

C语言阶段性测试题

大家好,我是深鱼~ 【前言】:本部分是C语言初阶学完阶段性测试题,最后一道编程题有一定的难度,需要多去揣摩,代码敲多了,自然就感觉不难了,加油,铁汁们!!&…

YOLO中Anchor生成介绍

Anchor生成机制 YOLOv1YOLOv2YOLOv4模型输出decode1.维度变换2.读取位置信息3.坐标变换4.构建网格5. 计算实际偏移量6.得到输出 YOLOv1 利用全连接层直接对边界框进行预测 YOLOv2 YOLOv2通过缩减网络,使用416x416的输入,模型下采样的总步长为32&#…

flutter开发实战-实现自定义按钮类似UIButton效果

flutter开发实战-实现自定义按钮类似UIButton效果 最近开发过程中需要实现一下UIButton效果的flutter按钮,这里使用的是监听手势点击事件。 一、GestureDetector GestureDetector属性定义 GestureDetector({super.key,this.child,this.onTapDown,this.onTapUp,t…

附件展示 点击下载

效果图 实现代码 <el-table-column prop"attachment" label"合同附件" width"250" show-overflow-tooltip><template slot-scope"scope"><div v-if"scope.row.cceedcAppendixInfoList &&scope.row.ccee…

路由的hash和history模式的区别

目录 ✅ 路由模式概述 一. 路由的hash和history模式的区别 1. hash模式 2. history模式 3. 两种模式对比 二. 如何获取页面的hash变化 ✅ 路由模式概述 单页应用是在移动互联时代诞生的&#xff0c;它的目标是不刷新整体页面&#xff0c;通过地址栏中的变化来决定内容区…

SQL 表别名 和 列别名

列表名 列表名之后 order by 可以用别名 也可以用原名&#xff0c; where 中不能用别名的 SQL语句执行顺序&#xff1a; from–>where–>group by -->having — >select --> order 第一步&#xff1a;from语句&#xff0c;选择要操作的表。 第二步&#xff1…

SpringBoot图片上传并对大小进行压缩(缩放比例)

前言 最近有个新需求&#xff0c;项目中对客户上传jpg图片的时候&#xff0c;每次都是校验大小必须≤30KB&#xff0c;但是客户实际使用的时候&#xff0c;总是会自己去进行压缩&#xff0c;压缩到30KB以内之后再上传&#xff0c;使用时间长了之后&#xff0c;客户总会觉得很麻…

react学习笔记——1. hello react

包含的包一共有4个&#xff0c;分别的作用如下&#xff1a; babel.min.js&#xff1a;可以进行ES6到ES5的语法转换&#xff1b;可以用于import&#xff1b;可以用于将jsx转换为js。注意&#xff0c;在开发的时候&#xff0c;这个转换&#xff08;jsx转换js&#xff09;不在线上…

Tcp的粘包和半包问题及解决方案

目录 粘包&#xff1a; 半包&#xff1a; 应用进程如何解读字节流&#xff1f;如何解决粘包和半包问题&#xff1f; ①&#xff1a;固定长度 ②&#xff1a;分隔符 ③&#xff1a;固定长度字段存储内容的长度信息 粘包&#xff1a; 一次接收到多个消息&#xff0c;粘包 应…

HBase概述

HBase 一 HBase简介与环境部署 1.1 HBase简介&在Hadoop生态中的地位 1.1.1 什么是HBase HBase是一个分布式的、面向列的开源数据库HBase是Google BigTable的开源实现HBase不同于一般的关系数据库, 适合非结构化数据存储 1.1.2 BigTable BigTable是Google设计的分布式…

mysql的update_time

CREATE TABLE users (id INT AUTO_INCREMENT PRIMARY KEY,name VARCHAR(50) NOT NULL,age INT,update_time TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT 更新时间 );具体解释如下&#xff1a; DEFAULT CURRENT_TIMESTAMP: 这部分表示当插入…

【CI/CD】图解六种分支管理模型

图解六种分支管理模型 任何一家公司乃至于一个小组织&#xff0c;只要有写代码的地方&#xff0c;就有代码版本管理的主场&#xff0c;初入职场&#xff0c;总会遇到第一个拦路虎 git 管理流程&#xff0c;但是每一个企业似乎都有自己的 git 管理流程&#xff0c;倘若我们能掌握…

如何在不使用脚本和插件的情况下手动删除 3Ds Max 中的病毒?

如何加快3D项目的渲染速度&#xff1f; 3D项目渲染慢、渲染卡顿、渲染崩溃&#xff0c;本地硬件配置不够&#xff0c;想要加速渲染&#xff0c;在不增加额外的硬件成本投入的情况下&#xff0c;最好的解决方式是使用渲云云渲染&#xff0c;在云端批量渲染&#xff0c;批量出结…

ABAP 自定义搜索功能 demo1

ABAP 自定义搜索功能 demo1 效果&#xff1a; 双击选中行则为选中对应发票 实现 1定义 定义屏幕筛选参数 SELECTION-SCREEN BEGIN OF SCREEN 9020. SELECT-OPTIONS:s1_belnr FOR rbkp-belnr, s1_gjahr FOR rbkp-gjahr, s1_lifnr FOR rbkp-lifnr, s1_erfna FOR rbkp-erfnam, …