● 583. 两个字符串的删除操作
这道题涉及到两个字符串删除操作,注意递推公式,理解不到位,需要再次做
- 确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
这里dp数组的定义有点点绕,大家要撸清思路。
- 确定递推公式
- 当word1[i - 1] 与 word2[j - 1]相同的时候
- 当word1[i - 1] 与 word2[j - 1]不相同的时候
当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:
情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。
- dp数组如何初始化
从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。
dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。
class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。vector<vector<int>> dp(word1.size()+1,vector<int> (word2.size()+1,0));for(int i = 0;i<word1.size()+1;i++){dp[i][0]= i;}for(int j = 0;j<word2.size()+1;j++){dp[0][j] = j;}for(int i = 1;i<=word1.size();i++){for(int j = 1;j<=word2.size();j++){if(word1[i-1]==word2[j-1]){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+2));}}}return dp[word1.size()][word2.size()];}
};
● 72. 编辑距离
这道题和之前讲的三四道题类似,都是一步一步递增的,之后需要继续看
class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size()+1,0));for(int i = 0;i<=word1.size();i++) dp[i][0] = i;for(int j = 0;j<=word2.size();j++) dp[0][j] = j;for(int i = 1;i<=word1.size();i++){for(int j = 1;j<=word2.size();j++){if(word1[i-1]==word2[j-1]){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1]))+1;}}}return dp[word1.size()][word2.size()];}
};
● 编辑距离总结篇
1.判断子序列
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];
2.不同的子序列
if (s[i - 1] == t[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {dp[i][j] = dp[i - 1][j];
}
3.两个字符串的删除操作
if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
} else {dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
}
4.编辑距离
if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
}
else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}