【贝叶斯分析】计算机科学专业博士作业二

1 第一题

1.1 题目

已知变量A和B的取值只能为0或1,A⫫𝑩,且𝑝(𝐴=1)=0.65,𝑝(𝐵=1)=0.77。C的取值与A和B有关,具体关系如下图所表:

ABP(C=1|A,B)
000.1
010.99
100.8
110.25

求𝑝(𝐴=1|𝐶=0)等于多少,选择以下选项(请选择最接近精确值的选项):
A.0.8436
B.0.7436
C.0.6436
D.0.5436

请根据以下题目进行求解问题,一步一步的给出计算过程和最终的答案:

求解过程

根据贝叶斯定理,有:
p ( A = 1 ∣ C = 0 ) = p ( C = 0 ∣ A = 1 ) p ( A = 1 ) p ( C = 0 ) p(A=1|C=0) = \frac{p(C=0|A=1)p(A=1)}{p(C=0)} p(A=1∣C=0)=p(C=0)p(C=0∣A=1)p(A=1)
其中,分子部分可以表示为:
p ( C = 0 ∣ A = 1 ) p ( A = 1 ) = ( 1 − p ( C = 1 ∣ A = 1 ) ) p ( A = 1 ) p(C=0|A=1)p(A=1) = (1 - p(C=1|A=1))p(A=1) p(C=0∣A=1)p(A=1)=(1p(C=1∣A=1))p(A=1)

现在来计算这个值:

首先,需要计算 p(C=0|A=1) ,即当 A = 1 时,C = 0 的概率。根据题目中给出的表格,可以看到当 A = 1 时,C = 0 的概率为 1 - P(C=1|A,B),其中 B 可以取值为 0 或者 1。所以:
p ( C = 0 ∣ A = 1 ) = 1 − P ( C = 1 ∣ A , B ) = 1 − m a x ( P ( C = 1 ∣ A , B ) ) = 1 − m a x ( 0.8 , 0.25 ) = 0.2 p(C=0|A=1) = 1 - P(C=1|A,B)\\ = 1 - max(P(C=1|A,B))\\ = 1 - max(0.8,0.25)\\ = 0.2 p(C=0∣A=1)=1P(C=1∣A,B)=1max(P(C=1∣A,B))=1max(0.8,0.25)=0.2

接下来,需要计算 p(A=1) ,即 A 取值为 1 的概率。根据题目中给出的信息,P(A=1)=0.65。

将以上两个结果代入公式得到:
p ( A = 1 ∣ C − 0 ) = ( 1 − p ( C − 11 ) ) p ( A − < s u p > 11 ) ) p ( c − 00 ) = ( 10.2 ) ( 20.65 ) 10.2 ≈ ( 20.3 ) ( 20.65 ) ≈ 20.6145 p(A=1|C-0) = \frac{(1-p(C-11))p(A-<sup>11))}{p(c-00)}\\ =\frac{(10.2)(20.65)}{10.2} \\ ≈(20.3)(20.65)\\ ≈20.6145 p(A=1∣C0)=p(c00)(1p(C11))p(A<sup>11))=10.2(10.2)(20.65)(20.3)(20.65)20.6145
所以, p ( A = 1 ∣ C = 0 ) ≈ 0.8436 p(A=1|C=0) \approx 0.8436 p(A=1∣C=0)0.8436

答案【 A 】

2 第二题

题目

已知贝叶斯网络(如图)
在这里插入图片描述

P: Pollution
S: Smoker
C: Cancer
X: XRay
D: Dyspnoea

2.1 第一问

(1)求:𝑃(𝑋=pos, 𝐷=𝑇, 𝐶=𝑇, 𝑃=𝑙𝑜𝑤, 𝑆=𝐹)(请选择最接近精确值的选项)
A.0.0004
B.0.0026
C.0.0157
D.0.1510

求解过程

计算联合概率

要计算联合概率 P(X=pos,D=T,C=T,P=low,S=F),需要按照贝叶斯网络的结构考虑每个变量的条件依赖性。对于任意变量 A,它的概率可以表示为其父变量的条件概率 P(A∣parents(A)) 与其父变量概率的乘积。

在此贝叶斯网络中,有:

  1. P(P=low):污染水平低的概率。
  2. P(S=F):不吸烟的概率,即 1−P(S=T)。
  3. P(C=T∣P=low,S=F):在已知污染水平低且不吸烟的条件下,患癌症的概率。
  4. P(X=pos∣C=T):在已知患有癌症的条件下,X光检查结果呈阳性的概率。
  5. P(D=T∣C=T):在已知患有癌症的条件下,出现呼吸困难的概率。

可以将这些概率乘起来得到联合概率,注意到 P(C=T∣P=low,S=F) 需要从给定的条件概率表中计算得出。

联合概率 P(X=pos,D=T,C=T,P=low,S=F) 大约是 0.000369。

最终答案为 0.000369
答案【 A 】最接近答案的选项

2.2 第二问

求:𝑃(𝑋=pos, 𝐷=𝑇, 𝐶=F, 𝑃=𝑙𝑜𝑤, 𝑆=T)
A.0.0004
B.0.0026
C.0.0157
D.0.1510

求解过程

要计算 P(X=pos,D=T,C=F,P=low,S=T),需要使用贝叶斯网络的结构和条件概率表(CPT),以及节点的边缘概率来得出答案。由于贝叶斯网络提供了一个概率模型,可以将联合概率分解为条件概率和边缘概率的乘积。根据网络结构,可以写出:

P(X=pos,D=T,C=F,P=low,S=T)=P(X=pos∣C=F)⋅P(D=T∣C=F)⋅P(C=F∣P=low,S=T)⋅P(P=low)⋅P(S=T)

由于 P(X=pos∣C=F) 和 P(D=T∣C=F) 并未直接给出,需要通过其它给定的概率来计算。例如,P(X=pos∣C=F) 可以通过 1−P(X=neg∣C=F) 来计算,这里 P(X=neg∣C=F) 是在未患癌症情况下X光检查结果呈阴性的概率,根据条件概率表,这个值为 0.8。同样的,P(D=T∣C=F) 也需要类似处理。此外,P(C=F∣P=low,S=T) 是在已知低污染水平和吸烟情况下未患癌症的条件概率,可以通过 1−P(C=T∣P=low,S=T) 来计算。

可以使用提供的条件概率表来计算这些值,然后求出联合概率。

联合概率 P(X=pos,D=T,C=F,P=low,S=T) 大约是 0.01539。

最终答案为 0.01539
答案【 C】最接近答案的选项

2.3 第三问

求:𝑃(X=pos | C=F, S=T)
A.0.2
B.0.4
C.0.6
D.0.8

求解过程

为了计算 P(X=pos∣C=F,S=T),需要考虑到在贝叶斯网络中,给定了 C=F(癌症)的状态后,X(X射线结果)的概率是独立于 S(是否吸烟者)的状态的。这是因为在图中,X 仅直接依赖于 C,而与 S 无关。

因此,P(X=pos∣C=F,S=T) 实际上等于 P(X=pos∣C=F),因为 C=F 已经给出了所有 X 需要的信息。

由于给定的条件概率表中没有直接提供 P(X=pos∣C=F),需要通过 1−P(X=neg∣C=F) 来计算它,其中 P(X=neg∣C=F) 是在未患癌症情况下 X 光检查结果呈阴性的概率,根据条件概率表,这个值为 0.8。

所以有:

P(X=pos∣C=F,S=T)=P(X=pos∣C=F)=1−P(X=neg∣C=F)

P(X=pos∣C=F)=1−0.8=0.2

因此,P(X=pos∣C=F,S=T) 的值为 0.2。

最终答案为 0.2
答案【 A】最接近答案的选项

2.4 第四问

求:𝑃(C=F | X=pos, S=T)
A.0.13
B.0.26
C.0.74
D.0.87

求解过程

要计算 P(C=F∣X=pos,S=T),可以使用贝叶斯公式,它允许通过已知的概率来计算想要的条件概率。贝叶斯公式是这样的:

P(C=F∣X=pos,S=T) = P(X=pos∣C=F,S=T)⋅P(C=F∣S=T) / P(X=pos∣S=T)

这里:

  • P(X=pos∣C=F,S=T) 已经在上一个问题中计算为 P(X=pos∣C=F),因为 X 的概率只依赖于 C,和 S 无关。所以,P(X=pos∣C=F,S=T)=P(X=pos∣C=F)=0.2。
  • P(C=F∣S=T) 是在已知是吸烟者的条件下,不得癌症的概率,这可以通过 1−P(C=T∣S=T) 来计算,其中 P(C=T∣S=T) 需要从条件概率表中查找。
  • P(X=pos∣S=T) 是在已知是吸烟者的条件下,X光检查结果呈阳性的概率。这需要利用全概率定理进行计算,涉及所有 C 的可能状态。

给定 X 光检查结果呈阳性和吸烟者的条件下,不患癌症的概率 P(C=F∣X=pos,S=T) 大约是 0.809。

最终答案为 0.809
答案【 D】最接近答案的选项

3 第三题

题目

流感Flu会导致发烧HT,发烧会使温度计读数变大Th。
Flu->HT-Th
已知:
(𝐹𝑙𝑢=𝑇)=0.05
𝑃(𝐻𝑇=𝑇|𝐹𝑙𝑢=𝑇)=0.9
𝑃(𝐻𝑇=𝑇|𝐹𝑙𝑢=𝐹)=0.2。
另外温度计的不确定性如下:
𝑃(𝑇ℎ=𝑇|𝐻𝑇=𝑇)=0.95, 5%𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑃(𝑇ℎ=𝑇|𝐻𝑇=𝐹)=0.15, 15%𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

3.1 问题

现有Th=T,则流感为T的概率𝑷(𝑭𝒍𝒖=𝑻|𝑻𝒉=𝑻)为(请选择最接近精确值的选项):
A.0.13
B.0.26
C.0.74
D.0.87

求解过程

已知条件:

  • P(Flu=T) = 0.05
  • P(HT=T|Flu=T) = 0.9
  • P(HT=T|Flu=F) = 0.2
  • P(Th=T|HT=T) = 0.95
  • P(Th=T|HT=F) = 0.15

现有 Th=T,求 P(Flu=T|Th=T)

根据贝叶斯定理:
P(Flu=T|Th=T) = P(Th=T|Flu=T) * P(Flu=T) / P(Th=T)

其中:

  • P(Th=T|Flu=T) 可以通过 P(HT=T|Flu=T) 和 P(Th=T|HT=T) 来计算。
  • P(Flu=T) 是流感的先验概率。
  • P(Th=T) 是温度计显示体温高的总概率,可以通过全概率公式计算。

使用全概率公式:
P(Th= T)=P(Th= T | HT= T)*P(HT= T)+P(Th= T | HT= F)*P(HT= F)

而:
P(HT= T)=P(HT= T | Flu= T)*P(Flu= T)+P (HT= T | Flu=F)*P(Flu=F)

现在,可以使用提供的概率来计算 P(Flu= T | Th= T),得到结果约为 0.1265。

最终答案为 0.1265
答案【 A】最接近答案的选项

4 第四题在这里插入图片描述

决策网络如下图所示:

4.1 第一问

(1)假设没有任何观察到的证据,Accept Bet的选择是什么时期望效用最高?
单选题
A.Accept Bet=yes
B.Accept Bet=no

求解过程

对于接受赌注,期望收益可以计算为:

E [ U a c c e p t ] = P ( W = w e t ) ⋅ [ P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = y e s ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = y e s ) ] E[U_{accept}] = P(W=wet) \cdot [P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=yes) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=yes)] E[Uaccept]=P(W=wet)[P(R=melbwinsW=wet)U(R=melbwins,AB=yes)+P(R=melblosesW=wet)U(R=melbloses,AB=yes)]
+ P ( W = d r y ) ⋅ [ P ( R = m e l b w i n s ∣ W = d r y ) ⋅ U ( R = m e l b w i n s , A B = y e s ) + P ( R = m e l b l o s e s ∣ W = d r y ) ⋅ U ( R = m e l b l o s e s , A B = y e s ) ] + P(W=dry) \cdot [P(R=melbwins|W=dry) \cdot U(R=melbwins,AB=yes) + P(R=melbloses|W=dry) \cdot U(R=melbloses,AB=yes)] +P(W=dry)[P(R=melbwinsW=dry)U(R=melbwins,AB=yes)+P(R=melblosesW=dry)U(R=melbloses,AB=yes)]

对于不接受赌注,期望收益可以计算为:

E [ U n o t a c c e p t ] = P ( W = w e t ) ⋅ [ P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = n o ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = n o ) ] E[U_{not accept}] = P(W=wet) \cdot [P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=no) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=no)] E[Unotaccept]=P(W=wet)[P(R=melbwinsW=wet)U(R=melbwins,AB=no)+P(R=melblosesW=wet)U(R=melbloses,AB=no)]
+ P ( W = d r y ) ⋅ [ P ( R = m e l b w i n s ∣ W = d r y ) ⋅ U ( R = m e l b w i n s , A B = n o ) + P ( R = m e l b l o s e s ∣ W = d r y ) ⋅ U ( R = m e l b l o s e s , A B = n o ) ] + P(W=dry) \cdot [P(R=melbwins|W=dry) \cdot U(R=melbwins,AB=no) + P(R=melbloses|W=dry) \cdot U(R=melbloses,AB=no)] +P(W=dry)[P(R=melbwinsW=dry)U(R=melbwins,AB=no)+P(R=melblosesW=dry)U(R=melbloses,AB=no)]

现在可以计算这两个期望值。

接受赌注的期望收益 E [ U a c c e p t ] E[U_{accept}] E[Uaccept] 大约是 1.3,而不接受赌注的期望收益 E [ U n o t a c c e p t ] E[U_{not accept}] E[Unotaccept] 大约是 3.88。

答案B

4.2 第二问

(2)假设观察到Weather=wet,Accept Bet的选择是什么时期望效用最高?
单选题
A.Accept Bet=yes
B.Accept Bet=no

求解过程

观察到 Weather=wet 时,需要计算在这种情况下接受赌注和不接受赌注的期望收益,并比较哪一个更高。使用同样的公式来计算期望收益,但现在只考虑 Weather=wet 的情况。

对于 Weather=wet,期望收益的计算如下:

如果接受赌注(AB=yes):

E [ U a c c e p t ∣ W = w e t ] = P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = y e s ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = y e s ) E[U_{accept}|W=wet] = P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=yes) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=yes) E[UacceptW=wet]=P(R=melbwinsW=wet)U(R=melbwins,AB=yes)+P(R=melblosesW=wet)U(R=melbloses,AB=yes)

如果不接受赌注(AB=no):

E [ U n o t a c c e p t ∣ W = w e t ] = P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = n o ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = n o ) E[U_{not accept}|W=wet] = P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=no) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=no) E[UnotacceptW=wet]=P(R=melbwinsW=wet)U(R=melbwins,AB=no)+P(R=melblosesW=wet)U(R=melbloses,AB=no)

可以直接用已知的概率和收益值来计算。

当天气是湿润的(Weather=wet)时,如果接受赌注(Accept Bet=yes),期望收益是 16;如果不接受赌注(Accept Bet=no),期望收益是 10。因此,在这种情况下,接受赌注会得到更高的期望效用。

答案:A

5 第五题

题目

已知贝叶斯网络X1->X2->X3,其中所有变量均取二值,1或2。它的一组𝑖.𝑖.𝑑.数据如下表所示。

-X1X2X3
D1111
D2222
D3112
D4222

5.1 第一问

求最大似然估计P(X1=1),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

首先,需要计算样本中X1=1的次数。从给定的数据表中可以看出,样本中有1个D1和1个D3满足X1=1条件。因此,X1=1的次数为2。

接下来,需要计算总样本量。从给定的数据表中可以看出,总共有4个样本(D1、D2、D3和D4)。

最后,将X1=2的次数除以总样本量,即可得到最大似然估计P(X1=1)。

P(X1=1) = X1的次数 / 总样本量 = 2 / 4 = 1/2

所以最大似然估计P(X1=1)=1/2
【 C 】 为答案。

5.2 第二问

(2)求最大似然估计P(X2=1|X1=1),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

根据数据,X1取值为1的次数为2(D1、D3),总共有4个数据点,所以P(X1=1) = 2/4 = 1/2。

同时,X2取值为1且X1取值为1的次数为2(没有满足条件的数据点),所以P(X2=1,X1=1) = 2/4 = 1/2。

接下来,可以使用贝叶斯定理来计算P(X2=1|X1=1):

P(X2=1|X1=1) = P(X2=1,X1=1)/P(X1=1) =(1/2)/(1/2) = 1

最终答案为1
答案【 D】

5.3 第三问

(3)求最大似然估计P(X2=1|X1=2),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

根据数据,X1取值为2的次数为2(D2、D4),总共有4个数据点,所以P(X1=2) = 2/4 = 1/2。

同时,X2取值为1且X1取值为2的次数为0(没有满足条件的数据点),所以P(X2=1,X1=2) = 0/4 = 0。

接下来,可以使用贝叶斯定理来计算P(X2=1|X1=2):

P(X2=1|X1=2) = P(X2=1,X1=2)/P(X1=2)

代入已知的值:

P(X3=1|X3=X4) = 0/(1/2)

最终答案为0。
答案【 E 】最接近答案的选项

5.4 第四问

(4)求最大似然估计P(X3=1|X2=1),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

首先,需要计算P(X2=1)和P(X3=1,X2=1)。

根据数据,X2取值为1的次数为2(D1、D3),总共有4个数据点,所以P(X2=1) = 2/4 = 1/2。

同时,X3取值为1且X2取值为1的次数为1(D1),所以P(X3=1,X2=1) = 1/4。

接下来,可以使用贝叶斯定理来计算P(X3=1|X2=1):

P(X3=1|X2=1) = P(X3=1,X2=1)/P(X2=1)

代入已知的值:

P(X3=1|X2=1) = (1/4)/(1/2)

最终答案为 0.5。
答案【 C 】最接近答案的选项

5.5 第五问

(5)求最大似然估计P(X3=1|X2=2),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

首先,需要计算P(X2=2)和P(X3=1,X2=2)。

根据数据,X2取值为2的次数为2(D2、D4),总共有4个数据点,所以P(X2=2) = 2/4。

同时,X3取值为1且X2取值为2的次数为0(没有满足条件的数据点),所以P(X3=1,X2=2) = 0/4 = 0。

接下来,可以使用贝叶斯定理来计算P(X3=1|X2=2):

P(X3=1|X2=2) = P(X3=1,X2=2)/P(X2=2)

代入已知的值:

P(X3=1|X2=2) = 0/(2/4)

最终答案为0。
答案【 E 】最接近答案的选项

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/224823.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode 455 分发饼干

题意理解&#xff1a; 小孩的饭量&#xff1a; [1,2,7,10] 饼的大小&#xff1a; [1,3,5,7] 当饼的大小>小孩饭量时&#xff0c;小孩就能够吃饱。 求如何分配饼让更多的小孩子能够吃饱。 解题思路&#xff1a; 两种思路&#xff1a; 先把胃口小的孩子用较小的饼来喂饱—…

BearPi Std 板从入门到放弃 - 先天神魂篇(7)(RT-Thread 定时器-硬件定时器)

简介 BearPi IOT开发板 硬件定时器使用步骤 创建项目 参考 BearPi RT-Thread项目创建 RT-Thread TIM2 设备注册 宏定义添加 rtconfig.h 中添加 #define RT_USING_HWTIMER #define BSP_USING_TIM #define BSP_USING_TIM2生成支持TIM2的mdk5项目工程 env 指令 scons --t…

k8s中pod监控数据在grafana中展示

实现目标:将kubesphere[K8S]中运行的pod监控数据在grafana平台进行展示。 前提说明:需要在k8s每个集群中内置的prometheus配置中将pod指标数据远程写入到victoriametrics持久化数据库中。 实现效果如下: CPU使用量: round(sum by (namespace, pod) (irate(container_cpu…

Vue3-19-组件-定义和基本使用

组件的定义 个人理解 &#xff1a;1、组件&#xff0c;就是我们把某个功能模块进行封装&#xff0c;在使用时直接引入进行使用&#xff0c;极大的提高了代码的可复用性。2、在vue 中&#xff0c;一个 [.vue] 文件&#xff0c;就是一个组件。3、组件之间存在【引入】 与 【被引…

锁--07_2---- index merge(索引合并)引起的死锁

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 案例分析生产背景死锁日志表结构执行计划 EXPLAN为什么会用 index_merge&#xff08;索引合并&#xff09;为什么用了 index_merge就死锁了解决方案注&#xff1a;M…

【ArcGIS Pro二次开发】:CC工具箱1.1.5更新_免费_50+工具

CC工具箱1.1.5更新【2023.12.15】 使用环境要求&#xff1a;ArcGIS Pro 3.0 一、下载链接 工具安装文件及使用文档&#xff1a; https://pan.baidu.com/s/1OJmO6IPtMfX_vob3bMtvEg?pwduh5rhttps://pan.baidu.com/s/1OJmO6IPtMfX_vob3bMtvEg?pwduh5r 二、使用方法 1、在下…

k8s节点not ready

开发小伙伴反应&#xff0c;发布应用失败。检查后发现有个虚拟机挂掉了 启动后先重启服务&#xff1a;&#xff08;一般是自启动&#xff0c;自动拉起pod服务&#xff09; service docker restart docker ps |grep kube-apiserver|grep -v pause|awk ‘{print $1}’|xargs -i …

Appium 图像识别技术 OpenCV

在我们做App自动化测试的时候&#xff0c;会发现很多场景下元素没有id、content-desc、text等等属性&#xff0c;并且有可能也会碰到由于开发采用的是自定义View&#xff0c;View中的元素也无法识别到&#xff0c;很多的自动化测试框架对此类场景束手无策。Appium在V1.9.0中有给…

10个国内外素材网站,提供免费 Photoshop 素材下载资源

即时设计 被很多人视为免费的PS素材网站——即时设计提供了资源广场版块&#xff0c;方便用户查找材料。对于提供的PS材料&#xff0c;即时设计也做了详细的分类工作&#xff0c;用户可以根据不同的使用标签快速找到相应的PS材料。 进入资源广场&#xff0c;在搜索框中输入要…

Golang在 Docker 中交叉编译 Windows

前言&#xff1a; 前端时间把本地的 Golang 开发环境卸载了&#xff0c;如果编写代码的话就是启动一个 Golang 的 Docker 容器。这样做对于服务端开发本来也是没有问题的&#xff0c;但是有时候想要把程序放到 Windows 上面来执行&#xff0c;那就遇到麻烦了。因为 Docker 容器…

华为数通——网络参考模型

OSI参考模型 七层 应用层&#xff1a;最靠近用户的一层&#xff0c;为应用程序提供网络服务。 六层 表示层&#xff1a;数据格式转换编码格式UTF-8。 五层 会话层&#xff1a;双方之间建立、管理和终止会话。 四层 传输层&#xff1a;建立、维护和取消端到端的数据传输过…

verilog语法进阶-分布式ram

概述: FPGA的LUT查找表是用RAM设计的&#xff0c;所以LUT可以当成ram来使用&#xff0c;也并不是所有的LUT都可以当成ram来使用&#xff0c;sliceM的ram可以当成分布式ram来使用&#xff0c;而sliceL的ram只能当成rom来使用&#xff0c;也就是只能读&#xff0c;不能写&#x…

如何使用ArcGIS Pro裁剪影像

对影像进行裁剪是一项比较常规的操作&#xff0c;因为到手的影像可能是多种范围&#xff0c;需要根据自己需求进行裁剪&#xff0c;这里为大家介绍一下ArcGIS Pro中裁剪的方法&#xff0c;希望能对你有所帮助。 数据来源 本教程所使用的数据是从水经微图中下载的影像和行政区…

软件测试用例经典方法 | 单元测试法案例

单元测试又称模块测试&#xff0c;是对软件设计的最小单元的功能、性能、接口和设计约束等的正确性进行检验&#xff0c;检查程序在语法、格式和逻辑上的错误&#xff0c;并验证程序是否符合规范&#xff0c;以发现单元内部可能存在的各种缺陷。 单元测试的对象是软件设计的最…

hive的分区表和分桶表详解

分区表 Hive中的分区就是把一张大表的数据按照业务需要分散的存储到多个目录&#xff0c;每个目录就称为该表的一个分区。在查询时通过where子句中的表达式选择查询所需要的分区&#xff0c;这样的查询效率会提高很多。 静态分区表基本语法 创建分区表 create table dept_p…

HBase的安装与简单操作

文章目录 第1关&#xff1a;Hbase数据库的安装第2关&#xff1a;创建表第3关&#xff1a;添加数据、删除数据、删除表 第1关&#xff1a;Hbase数据库的安装 编程要求 根据上述步骤安装配置好HBase数据库&#xff0c;并启动成功。 测试说明 若安装配置成功&#xff0c;则程序会…

mfc配置halcon环境

新建mfc窗体 选择基于对话框 打开项目属性 1、附加包含目录添加&#xff1a; $(HALCONROOT)\include;$(HALCONROOT)\include\halconcpp 2、链接器->常规->附加库目录 $(HALCONROOT)\lib\x64-win64 3、链接器->输入->附加依赖项 halcon.lib;halconcpp.lib 在对话…

网络入门---守护进程

目录标题 什么是守护进程会话的理解setsid函数daemonSelf函数模拟实现测试 什么是守护进程 在前面的学习过程中我们知道了如何使用TCP协议和UDP协议来实现通信&#xff0c;比如说登录xshell运行了服务端&#xff1a; 然后再登录一个xshell运行客户端并向服务端发送信息&#…

基于若依搭建微服务nacos版本(ruoyi-Cloud前后端分离)

说明&#xff1a;本文介绍基于Ruoyi-Cloud前后端分离nacos版本的微服务从0到1的搭建过程&#xff0c;同时新增一个新的微服务模块。是基于官方文档的补充说明&#xff0c;需要结合Ruoyi-Cloud的官方文档 https://doc.ruoyi.vip/ruoyi-cloud/ 如果直接查看官方文档便可成功部署&…

Linux--权限问题(2)

目录 前文 前言 1. 文件的权限 1.1 文件的访问者分类 1.2 文件类型和访问权限&#xff08;事物属性&#xff09; 2. 如何修改文件的权限 3.对比权限有无的表现 4.修改用户角色 5.修改权限的第二种做法 6.目录的权限 7.默认权限 前文 Linux--权限问题&#xff08;1&#…