数据结构-07-二叉树

       前面学习的栈、队列等等都是线性表结构。树是一种非线性表结构,比线性表的数据结构要复杂。

1-树tree

       “树”这种数据结构类似我们现实生活中的“树”,这里面每个元素我们叫作“节点”;用来连线相邻节点之间的关系,我们叫作“父子关系”。如下图:

      

       A节点就是B节点的父节点,B节点是A节点的子节点。B、C、D这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。我们把没有父节点的节点叫作根节点,也就是图中的节点E。我们把没有子节点的节点叫作叶子节点或者叶节点,比如图中的G、H、I、J、K、L都是叶子节点。

节点的高度:节点到叶子节点的最长路径(边数);
节点的深度:根节点到这个节点所经历的边的个数;
节点的层数:节点的深度+1;
树的高度:根节点的高度。
 

       “高度”这个概念,其实就是从下往上度量,比如我们要度量第10层楼的高度、第13层楼的高度,起点都是地面。所以,树这种数据结构的高度也是一样,从最底层开始计数,并且计数的起点是0。
       “深度”这个概念在生活中是从上往下度量的,比如水中鱼的深度,是从水平面开始度量的。所以,树这种数据结构的深度也是类似的,从根结点开始度量,并且计数起点也是0。
      “层数”跟深度的计算类似,不过,计数起点是1,也就是说根节点的位于第1层。

2-二叉树Binary Tree

       二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点右子。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。我们重点看下以下两个二叉树:满二叉树和完全二叉树。

       叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫作满二叉树

       叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫作完全二叉树

3-二叉树的存储和表示方式

       想要存储一棵二叉树,我们有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。
      链式存储法:每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式我们比较常用。大部分二叉树代码都是通过这种结构来实现的。

     

       基于数组的顺序存储法。我们把根节点存储在下标i = 1的位置,那左子节点存储在下标2 * i = 2的位置,右子节点存储在2 * i + 1 = 3的位置。以此类推,B节点的左子节点存储在2 * i = 2 * 2 = 4的位置,右子节点存储在2 * i + 1 = 2 * 2 + 1 = 5的位置。

        如果节点X存储在数组中下标为i的位置,下标为2 * i 的位置存储的就是左子节点,下标为2 * i + 1的位置存储的就是右子节点。反过来,下标为i/2的位置存储就是它的父节点。通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为1的位置),这样就可以通过下标计算,把整棵树都串起来。一棵完全二叉树,所以仅仅“浪费”了一个下标为0的存储位置。如果是非完全二叉树,其实会浪费比较多的数组存储空间。


       所以,如果某棵二叉树是一棵完全二叉树,那用数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。

4-二叉树的遍历

       经典的方法有三种,前序遍历中序遍历后序遍历。其中,前、中、后序,表示的是节点与它的左右子树节点遍历打印的先后顺序。
       前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。根-左-右
       中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。左-根-右
       后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身。左-右-根

      前、中、后序遍历的顺序图,可以看出来,每个节点最多会被访问两次,所以遍历操作的时间复杂度,跟节点的个数n成正比,也就是说二叉树遍历的时间复杂度是O(n)

5-二叉查找树Binary Search Tree

       二叉查找树是二叉树中最常用的一种类型,也叫二叉搜索树。顾名思义,二叉查找树是为了实现快速查找而生的。不过,它不仅仅支持快速查找一个数据,还支持快速插入、删除一个数据。
       二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值。

查找:先取根节点,如果它等于我们要查找的数据,那就返回。如果要查找的数据比根节点的值小,那就在左子树中递归查找;如果要查找的数据比根节点的值大,那就在右子树中递归查找。

插入:新插入的数据一般都是在叶子节点上,所以我们只需要从根节点开始,依次比较要插入的数据和节点的大小关系。如果要插入的数据比节点的数据大,并且节点的右子树为空,就将新数据直接插到右子节点的位置;如果不为空,就再递归遍历右子树,查找插入位置。同理,如果要插入的数据比节点数值小,并且节点的左子树为空,就将新数据插入到左子节点的位置;如果不为空,就再递归遍历左子树,查找插入位置。

删除:删除的情况比较复杂,分情况讨论。
       第一种情况是,如果要删除的节点没有子节点,我们只需要直接将父节点中,指向要删除节点的指针置为null。比如删除下图的节点55;
       第二种情况是,如果要删除的节点只有一个子节点(只有左子节点或者右子节点),我们只需要更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了。比如删除下图的节点13;
      第三种情况是,如果要删除的节点有两个子节点,这就比较复杂了。我们需要找到这个节点的右子树中的最小节点,把它替换到要删除的节点上。然后再删除掉这个最小节点,因为最小节点肯定没有左子节点(如果有左子结点,那就不是最小节点了),所以,我们可以应用上面两条规则来删除这个最小节点。比如删除下图的节点18;

删除后:


       实际上,关于二叉查找树的删除操作,还有个非常简单、取巧的方法,就是单纯将要删除的节点标记为“已删除”,但是并不真正从树中将这个节点去掉。这样原本删除的节点还需要存储在内存中,比较浪费内存空间,但是删除操作就变得简单了很多。而且,这种处理方法也并没有增加插入、查找操作代码实现的难度。

6-二叉查找树的时间复杂度

       不管操作是插入、删除还是查找,时间复杂度其实都跟树的高度成正比,也就是O(height)。完全二叉树的高度小于等于logn(以2为底的对数)。二叉查找树在比较平衡的情况下,插入、删除、查找操作时间复杂度才是O(logn)。

7-二叉查找树 vs 散列表

       散列表的插入、删除、查找操作的时间复杂度可以做到常量级的O(1),非常高效。而二叉查找树在比较平衡的情况下,插入、删除、查找操作时间复杂度才是O(logn),为什么还需要二叉查找树?

       第一,散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在O(n)的时间复杂度内,输出有序的数据序列。
      第二,散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在O(logn)。
       第三,笼统地来说,尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比logn小,所以实际的查找速度可能不一定比O(logn)快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。
       第四,散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。
       最后,为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/224779.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云端赋能大湾区:华为云照亮数字化转型之路

编辑:阿冒 设计:沐由 在中国的经济版图上,大湾区是极其重要的增长引擎。这块富有活力和创新力的经济区域里,荟聚了大量的高新技术企业,以及一批创新孵化器和科研机构,产业升级和技术创新的氛围格外浓烈。 1…

山峰个数 - 华为OD统一考试

OD统一考试 分值: 100分 题解: Java / Python / C++ 题目描述 给定一个数组,数组中的每个元素代表该位置的海拔高度。0表示平地,>=1时表示属于某个山峰,山峰的定义为当某个位置的左右海拔均小于自己的海拔时,该位置为山峰。数组起始位置计算时可只满足一边的条件。 …

lv12 linux内核的安装与加载

目录 1 tftp加载Linux内核及rootfs 1.1 uboot内核启动命令 1.2 uboot自启动参数环境变量 1.3 实验 2 EMMC加载Linux 内核及rootfs ​编辑 2.1 emmc中写入uimage ​编辑 2.2 emmc中写入dtb 2.3 emmc中写入根文件系统 2.4 设置环境变量 3 tftp加载Linux内核nfs挂载ro…

centos 手动编译安装git

原因 由于centos自带的git版本太低,使用git的时候会出现很多问题,但是尝试了各种办法无法直接更新git版本,所以最后自己手动编译安装git 在github下载源码,下载解压之后,上传到服务器,我上传到 /home/user…

探索多功能SQL数据库编辑器 - Richardson Software RazorSQL

在当今数字化时代,SQL数据库的管理和编辑是许多企业和开发人员必不可少的任务。为了提高生产力和简化数据库操作,Richardson Software推出了一款强大而多功能的SQL数据库编辑器 - RazorSQL。 RazorSQL是一款功能全面的数据库管理工具,可适用…

LeetCode(61)删除链表的倒数第 N 个结点【链表】【中等】

目录 1.题目2.答案3.提交结果截图 链接: 删除链表的倒数第 N 个结点 1.题目 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head [1,2,3,4,5], n 2 输出:[1,2,3,5]示例…

【STM32独立看门狗(IWDG) 】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、看门狗是什么?1.简介2. 主要功能3.独立看门狗如何工作4.寄存器写保护5.看门狗 看门时间 二、使用步骤1.开启时钟2.初始化看门狗3.开启看门狗4.喂…

ACL和NAT

文章目录 ACL和NAT一、ACL概述及产生背景1、ACL访问控制列表2、ACL工作原理3、ACL种类4、ACL命令配置步骤4.1 ACL命令配置4.1 ACL配置步骤 二、NAT(网络地址转换)1、NAT概述2、NAT类型2.1 静态NAT与动态NAT 3、NATPT(端口映射)4、…

详解—【C++】lambda表达式

目录 前言 一、lambda表达式 二、lambda表达式语法 2.1. lambda表达式各部分说明 2.2. 捕获列表说明 三、函数对象与lambda表达式 前言 在C98中&#xff0c;如果想要对一个数据集合中的元素进行排序&#xff0c;可以使用std::sort方法。 #include <algorithm> #i…

服务器被攻击宕机的一些小建议

现在网络攻击屡有发生&#xff0c;任何网站服务器都面临这样的危险&#xff0c;服务器被攻击造成的崩溃宕机是损失是我们无法估量的。网络攻击我们无法预测&#xff0c;但做好防御措施是必须的&#xff0c;建议所有的网站都要做好防范措施&#xff0c;准备相应的防护预案&#…

maven jar sort

1&#xff09;往常项目结构lib包排序 2&#xff09;maven的默认是没有排序的

《数据结构、算法与应用C++语言描述》- 构建哈夫曼树

哈夫曼树 完整可编译运行代码见&#xff1a;Github::Data-Structures-Algorithms-and-Applications/_29huffmanTree 定长编码与可变长编码 定长编码 每个字符都用固定长度的编码来表示。 例如假设一个文本是由字符 a、u、x 和 z 组成的字符串&#xff0c;每个字符用2位二进…

【idea】idea尾部自动删除空格,idea2023.1.2关闭自动去除行尾空格的功能

这个功能是由于git或者svn上的代码有许多空格的时候&#xff0c;会自动把空格去掉&#xff0c;就会导致出现许多更改的地方&#xff0c;会自动删空格。 尾部刚打好空格准备写代码&#xff0c;自动就删掉空格&#xff0c;又得重打空格后继续编码&#xff0c;非常不爽。 设置如…

HTML5 Canvas画布讲解

一、canvas 简介 ​<canvas> 是 HTML5 新增的&#xff0c;一个可以使用脚本(通常为 JavaScript) 在其中绘制图像的 HTML 元素。它可以用来制作照片集或者制作简单(也不是那么简单)的动画&#xff0c;甚至可以进行实时视频处理和渲染。 ​它最初由苹果内部使用自己 MacO…

我的NPI项目之Android 安全系列 -- EMVCo

最近一直在和支付有关的内容纠缠&#xff0c;原来我负责的产品后面还要过EMVCo的认证。于是&#xff0c;就网上到处找找啥事EMVCo&#xff0c;啥是EMVCo&#xff0c;啥是EMVCo。 于是找到了一个神奇的个人网站&#xff1a;Ganeshji Marwaha 虽然时间有点久远&#xff0c;但是用…

黑马点评04集群下的并发安全

实战篇-08.优惠券秒杀-集群下的线程并发安全问题_哔哩哔哩_bilibili 为了应对高并发&#xff0c;需要把项目部署到多个机器构成集群&#xff0c;所以需要配置nginx。 1.如何模拟集群 通过idea的ctrl d修改配置&#xff0c;实现多个tomcat运行模拟集群 然后在nginx上配置节点&…

计算机网络快速刷题

自用//奈奎斯特定理和香农定理计算题 参考博客&#xff1a;UDP协议是什么&#xff1f;作用是什么&#xff1f; 肝了&#xff0c;整理了8张图详解ARP原理 【网络协议详解】——FTP系统协议&#xff08;学习笔记&#xff09; 在OSI参考模型中&am…

Tekton 克隆 git 仓库

Tekton 克隆 git仓库 介绍如何使用 Tektonhub 官方 git-clone task 克隆 github 上的源码到本地。 git-clone task yaml文件下载地址&#xff1a;https://hub.tekton.dev/tekton/task/git-clone 查看git-clone task yaml内容&#xff1a; 点击Install&#xff0c;选择一种…

聊聊Java中的常用类String

String、StringBuffer、StringBuilder 的区别 从可变性分析 String不可变。StringBuffer、StringBuilder都继承自AbstractStringBuilder &#xff0c;两者的底层的数组value并没有使用private和final修饰&#xff0c;所以是可变的。 AbstractStringBuilder 源码如下所示 ab…

最新AI绘画Midjourney绘画提示词Prompt教程

一、Midjourney绘画工具 SparkAi【无需魔法使用】&#xff1a; sparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的…