用python做餐饮业的数据分析

问题:

1,订单表的长度 shape columns
2,统计菜单的平均价格(amount)
3,什么菜最受欢迎
订单 客户 时间 菜品 这几个维度
4,哪个订单ID点的菜最多等问题

首先在jupyter note里导入模块

import numpy as np
import pandas as pd
import matplotlib.pylot as plt
plt.rcParams['font.sans_serif'] = 'SimHei'

#设置中文显示
#第一步,加载数据

data1 = pd.read_excel('表1',sheet_name='')
data2 =pd.read_excel('表2',sheet_name='')
date3 =pd.read_excel('表3',sheet_name='')

#第二步,数据预处理(合并数据,NA等处理),分析数据

data = concat([data1,data2,data3],axis = 0) #按照行进行数据拼接

#data.head(5)

data.dropna(axis = 1,inplace = True) #按照列删除NA列,并且修改源数据data.info()

#统计卖出菜品的平均价格

round(data['amounts'].mean(),2) #方法一:pandas 自带函数
round(np.mean(data['amounts']),2) #方法二: numpy函数处理

#频数统计,什么菜最受欢迎
#去除菜名,计数统计,统计出销量前十名

dashes_count = data['dishes_name'].value_counts()[:10]

#第三步,数据可视化matplotlib

dishes_count.plot(kind='line',colors=[' r '] )) #绘制折线图
dishes_count.plot(kind='bar',fontsize=16) #绘制堆积柱形图

#遍历循环 加工图

for x,y in enumerate(dishes_count):print(x,y)plt.text(x,y+2,y,ha='center',fontsize=12)

1,#订单点菜的种类最多,区别于点菜的数量,就是要分组
(shift +回车 是执行的快捷键)

date_group = data['order_id'].valuecounts()[:10]
date_group.plot(kind = 'bar',fontsize=16,color=['r','m','b',y','g')
plt.title('订单点菜的种类Top10')
plt.xlabel('订单ID',fontsize=16)
plt.ylabel('点菜种类',fontsize=16)

#八月份餐厅订单点菜种类前10名,平均点菜25个菜品

#订单ID平均菜品最贵前10名

分组

2,#订单ID点菜数量TOP10 分组order_id,counts求和,排序,前十)

data['Total_amount'] = data['counts']*data['amounts']  #统计单道菜消费总额
dataGroup = data[['order_id','counts','amounts','total_amounts']].groupby(by = 'order_id')
Group_sum = dataGroup.sum() #分组求和
sort_counts = Group_sum.sort_values(by = 'counts',ascending =False)
sort_counts['counts'][:10].plot(kind='bar',fontsize = 16)
plt.xlabel('订单ID')
plt.ylabel('点菜数量')
plt.title('订单ID点菜数量Top10')
#八月份订单点菜数量前10名

#哪个订单ID吃的钱最多(排序)

sort_total_amounts = Group_sum.sort_values(by='total_amounts',ascending=False)
sort_total_amounts['total_amounts'][:10].plot(kind = 'bar'
plt,xlabel('订单ID')
plt.ylabel('消费金额')
plt.title('消费金额前10')

加大消费力度,大众的消费 总数 取中间的位置 平均的

总价除以消费数量 等于消费单价

3, #哪个订单的平均消费最贵

Group_sum['average'] = Group_sum['total_amount'] / Group_sum['counts']
sort_average = Group_sum.sort_values(by='average',ascending=False)
sort_average['average'][:].plot(kind = 'bar',fontsize = 12)
plt,xlabel('订单ID')
plt.ylabel('消费单价')
plt.title('订单消费单价前10')

分析:
从时间维度
1,#一天当中什么时间段,点菜量比较集中(hour)

data['hourcount'] = 1 #新列,用作计数器
data['time'] = pd.to_datetime(data['place_order_time']) #将时间转换成日期类型存储
data['hour'] = data['time'].map(lambda x:x.hour)
gp_by_hour = data.groupby(by='hour').count()['hourcount']
gp_py_hour.plot(kind = 'bar')
plt,xlabel('小时')
plt.ylabel('下单数量')
plt.title('下单数与小时的关系图')

2,哪一天订餐数量最多

data['daycount'] = 1
data['day'] = data['time'].map(lambda x:x.day)
gp_by_day = data.groupby(by='day').count()['daycount']
gp_py_day.plot(kind = 'bar')
plt,xlabel('日期')
plt.ylabel('点菜数量')
plt.title('点菜数量与日期的关系图')

3,星期几就餐人数最多

data['weekcount'] = 1
data['weekday'] = data['time'].map(lambda x:x.weekday)
gp_by_weekday = data.groupby(by='weekday').count()['weekdaycount']
gp_py_weekday.plot(kind = 'bar')
plt,xlabel('星期')
plt.ylabel('点菜数量')
plt.title('点菜数量与星期的关系图')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/224773.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索多功能SQL数据库编辑器 - Richardson Software RazorSQL

在当今数字化时代,SQL数据库的管理和编辑是许多企业和开发人员必不可少的任务。为了提高生产力和简化数据库操作,Richardson Software推出了一款强大而多功能的SQL数据库编辑器 - RazorSQL。 RazorSQL是一款功能全面的数据库管理工具,可适用…

LeetCode(61)删除链表的倒数第 N 个结点【链表】【中等】

目录 1.题目2.答案3.提交结果截图 链接: 删除链表的倒数第 N 个结点 1.题目 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head [1,2,3,4,5], n 2 输出:[1,2,3,5]示例…

Lua 元表,元方法

元表与元方法的概念 Lua中每个值都可具有元表。元表是普通的Lua表,定义了原始值在某些特定操作下 的行为。 例如,当table作为加法的操作数时,Lua检查其“元表”中的“__add”字段是否有 个函数。如果有,Lua调用它执行加法。我们称“元表”中的“键(如__add)”为事件(event),称…

【STM32独立看门狗(IWDG) 】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、看门狗是什么?1.简介2. 主要功能3.独立看门狗如何工作4.寄存器写保护5.看门狗 看门时间 二、使用步骤1.开启时钟2.初始化看门狗3.开启看门狗4.喂…

ACL和NAT

文章目录 ACL和NAT一、ACL概述及产生背景1、ACL访问控制列表2、ACL工作原理3、ACL种类4、ACL命令配置步骤4.1 ACL命令配置4.1 ACL配置步骤 二、NAT(网络地址转换)1、NAT概述2、NAT类型2.1 静态NAT与动态NAT 3、NATPT(端口映射)4、…

详解—【C++】lambda表达式

目录 前言 一、lambda表达式 二、lambda表达式语法 2.1. lambda表达式各部分说明 2.2. 捕获列表说明 三、函数对象与lambda表达式 前言 在C98中&#xff0c;如果想要对一个数据集合中的元素进行排序&#xff0c;可以使用std::sort方法。 #include <algorithm> #i…

【.Net 6.0--通用帮助类--FileHelper】

前言 文件操作帮助类&#xff0c;包含下表中的方法&#xff1a; 方法名方法解释GetFileNames获取指定目录中所有文件列表GetDirectories获取指定目录中的子目录列表GetDirectoryCreateTime获取文件夹的创建时间GetFileCreateTime获取文件的创建时间GetFileSize获取一个文件的…

服务器被攻击宕机的一些小建议

现在网络攻击屡有发生&#xff0c;任何网站服务器都面临这样的危险&#xff0c;服务器被攻击造成的崩溃宕机是损失是我们无法估量的。网络攻击我们无法预测&#xff0c;但做好防御措施是必须的&#xff0c;建议所有的网站都要做好防范措施&#xff0c;准备相应的防护预案&#…

linux/CentOS 7安装Nginx

Nginx 是 C语言 开发&#xff0c;建议在 Linux 上运行&#xff0c;当然&#xff0c;也可以安装 Windows 版本&#xff0c;本篇则使用 CentOS 7 作为安装环境。 Nginx一般使用非root账号安装&#xff0c;如果还没有非root账号&#xff0c;先创建账号 创建账号 创建组&#xf…

云原生之深入解析docker实用工具gosu和su-exec实践

一、volume 的权限问题 在 Docker 中&#xff0c;需要把 host 的目录挂载到 container 中作为 volume 使用时&#xff0c;往往会发生文件权限问题。常见的现象是&#xff0c;container 对该路径并无写权限&#xff0c;以致其中服务的各种千奇百怪的问题。导致这类问题的原因&a…

maven jar sort

1&#xff09;往常项目结构lib包排序 2&#xff09;maven的默认是没有排序的

《数据结构、算法与应用C++语言描述》- 构建哈夫曼树

哈夫曼树 完整可编译运行代码见&#xff1a;Github::Data-Structures-Algorithms-and-Applications/_29huffmanTree 定长编码与可变长编码 定长编码 每个字符都用固定长度的编码来表示。 例如假设一个文本是由字符 a、u、x 和 z 组成的字符串&#xff0c;每个字符用2位二进…

Python录制和绘制音频

要使用Python录制和绘制音频,使用Python的音频处理库和绘图库。 以下是一个简单的示例代码,演示如何使用Python录制音频并绘制其波形: import wave import numpy as np import matplotlib.pyplot as plt# 设置音频参数 sample_rate = 44100 # 采样率 duration = 5 # 录制…

【idea】idea尾部自动删除空格,idea2023.1.2关闭自动去除行尾空格的功能

这个功能是由于git或者svn上的代码有许多空格的时候&#xff0c;会自动把空格去掉&#xff0c;就会导致出现许多更改的地方&#xff0c;会自动删空格。 尾部刚打好空格准备写代码&#xff0c;自动就删掉空格&#xff0c;又得重打空格后继续编码&#xff0c;非常不爽。 设置如…

HTML5 Canvas画布讲解

一、canvas 简介 ​<canvas> 是 HTML5 新增的&#xff0c;一个可以使用脚本(通常为 JavaScript) 在其中绘制图像的 HTML 元素。它可以用来制作照片集或者制作简单(也不是那么简单)的动画&#xff0c;甚至可以进行实时视频处理和渲染。 ​它最初由苹果内部使用自己 MacO…

我的NPI项目之Android 安全系列 -- EMVCo

最近一直在和支付有关的内容纠缠&#xff0c;原来我负责的产品后面还要过EMVCo的认证。于是&#xff0c;就网上到处找找啥事EMVCo&#xff0c;啥是EMVCo&#xff0c;啥是EMVCo。 于是找到了一个神奇的个人网站&#xff1a;Ganeshji Marwaha 虽然时间有点久远&#xff0c;但是用…

黑马点评04集群下的并发安全

实战篇-08.优惠券秒杀-集群下的线程并发安全问题_哔哩哔哩_bilibili 为了应对高并发&#xff0c;需要把项目部署到多个机器构成集群&#xff0c;所以需要配置nginx。 1.如何模拟集群 通过idea的ctrl d修改配置&#xff0c;实现多个tomcat运行模拟集群 然后在nginx上配置节点&…

如何在PHP中使用Memcached和Redis?

在 PHP 中使用 Memcached 和 Redis 主要涉及两个方面&#xff1a;安装相关扩展和编写代码进行交互。以下是在 PHP 中使用 Memcached 和 Redis 的基本步骤&#xff1a; 使用 Memcached&#xff1a; 1. 安装 Memcached 扩展&#xff1a; 确保你的系统上安装了 Memcached 服务器…

计算机网络快速刷题

自用//奈奎斯特定理和香农定理计算题 参考博客&#xff1a;UDP协议是什么&#xff1f;作用是什么&#xff1f; 肝了&#xff0c;整理了8张图详解ARP原理 【网络协议详解】——FTP系统协议&#xff08;学习笔记&#xff09; 在OSI参考模型中&am…

Tekton 克隆 git 仓库

Tekton 克隆 git仓库 介绍如何使用 Tektonhub 官方 git-clone task 克隆 github 上的源码到本地。 git-clone task yaml文件下载地址&#xff1a;https://hub.tekton.dev/tekton/task/git-clone 查看git-clone task yaml内容&#xff1a; 点击Install&#xff0c;选择一种…