PyTorch: 基于【VGG16】处理MNIST数据集的图像分类任务【准确率98.9%+】

目录

  • 引言
  • 在Conda虚拟环境下安装pytorch
  • 步骤一:利用代码自动下载mnist数据集
  • 步骤二:搭建基于VGG16的图像分类模型
  • 步骤三:训练模型
  • 步骤四:测试模型
  • 运行结果
  • 后续模型的优化和改进建议
  • 完整代码
  • 结束语

引言

在本博客中,小编将向大家介绍如何使用VGG16处理MNIST数据集的图像分类任务。MNIST数据集是一个常用的手写数字分类数据集,包含60,000个训练样本和10,000个测试样本。我们将使用Python编程语言和PyTorch深度学习框架来实现这个任务。

在Conda虚拟环境下安装pytorch

# CUDA 11.6
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
# CUDA 11.3
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
# CUDA 10.2
pip install torch==1.12.1+cu102 torchvision==0.13.1+cu102 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu102
# CPU only
pip install torch==1.12.1+cpu torchvision==0.13.1+cpu torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cpu

步骤一:利用代码自动下载mnist数据集

import torchvision.datasets as datasets  
import torchvision.transforms as transforms  # 定义数据预处理操作  
transform = transforms.Compose([transforms.Resize(224), # 将图像大小调整为(224, 224)transforms.ToTensor(),  # 将图像转换为PyTorch张量transforms.Normalize((0.5,), (0.5,))  # 对图像进行归一化
])# 下载并加载MNIST数据集  
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)  
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)

步骤二:搭建基于VGG16的图像分类模型

class VGGClassifier(nn.Module):def __init__(self, num_classes):super(VGGClassifier, self).__init__()self.features = models.vgg16(pretrained=True).features  # 使用预训练的VGG16模型作为特征提取器# 重构VGG16网络的第一层卷积层,适配mnist数据的灰度图像格式self.features[0] = nn.Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),  # 添加一个全连接层,输入特征维度为512x7x7,输出维度为4096nn.ReLU(True),nn.Dropout(), # 随机将一些神经元“关闭”,这样可以有效地防止过拟合。nn.Linear(4096, 4096),  # 添加一个全连接层,输入和输出维度都为4096nn.ReLU(True),nn.Dropout(),nn.Linear(4096, num_classes),  # 添加一个全连接层,输入维度为4096,输出维度为类别数(10))self._initialize_weights()  # 初始化权重参数def forward(self, x):x = self.features(x)  # 通过特征提取器提取特征x = x.view(x.size(0), -1)  # 将特征张量展平为一维向量x = self.classifier(x)  # 通过分类器进行分类预测return xdef _initialize_weights(self):  # 定义初始化权重的方法,使用Xavier初始化方法for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.normal_(m.weight, 0, 0.01)nn.init.constant_(m.bias, 0)

步骤三:训练模型

import torch.optim as optim  
from torch.utils.data import DataLoader  # 定义超参数和训练参数  
batch_size = 64  # 批处理大小  
num_epochs = 5  # 训练轮数
learning_rate = 0.01  # 学习率
num_classes = 10  # 类别数(MNIST数据集有10个类别)  
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # 判断是否使用GPU进行训练,如果有GPU则使用GPU进行训练,否则使用CPU。# 定义训练集和测试集的数据加载器  
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)  
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)  # 初始化模型和优化器  
model = VGGClassifier(num_classes=num_classes).to(device)  # 将模型移动到指定设备(GPU或CPU)  
criterion = nn.CrossEntropyLoss()  # 使用交叉熵损失函数  
optimizer = optim.SGD(model.parameters(), lr=learning_rate)  # 使用随机梯度下降优化器(SGD)  # 训练模型  
for epoch in range(num_epochs):  for i, (images, labels) in enumerate(train_loader):  images = images.to(device)  # 将图像数据移动到指定设备  labels = labels.to(device)  # 将标签数据移动到指定设备  # 前向传播  outputs = model(images)  loss = criterion(outputs, labels)  # 反向传播和优化  optimizer.zero_grad()  # 清空梯度缓存  loss.backward()  # 计算梯度  optimizer.step()  # 更新权重参数  if (i+1) % 100 == 0:  # 每100个batch打印一次训练信息  print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))  # 保存模型参数  
torch.save(model.state_dict(), './model.pth')

步骤四:测试模型

# 加载训练好的模型参数
model.load_state_dict(torch.load('./model.pth'))
model.eval()  # 将模型设置为评估模式,关闭dropout等操作# 定义评估指标变量
correct = 0  # 记录预测正确的样本数量
total = 0  # 记录总样本数量# 测试模型性能
with torch.no_grad():  # 关闭梯度计算,节省内存空间for images, labels in test_loader:images = images.to(device)  # 将图像数据移动到指定设备labels = labels.to(device)  # 将标签数据移动到指定设备outputs = model(images)  # 模型前向传播,得到预测结果_, predicted = torch.max(outputs.data, 1)  # 取预测结果的最大值对应的类别作为预测类别total += labels.size(0)  # 更新总样本数量correct += (predicted == labels).sum().item()  # 统计预测正确的样本数量# 计算模型准确率并打印出来
accuracy = 100 * correct / total  # 计算准确率,将正确预测的样本数量除以总样本数量并乘以100得到百分比形式的准确率。
print('Accuracy of the model on the test images: {} %'.format(accuracy))  # 打印出模型的准确率。

运行结果

在这里插入图片描述

后续模型的优化和改进建议

  1. 数据增强:通过旋转、缩放、平移等方式来增加训练数据,从而让模型拥有更好的泛化能力。
  2. 调整模型参数:可以尝试调整模型的参数,比如学习率、批次大小、迭代次数等,来提高模型的性能。
  3. 更换网络结构:可以尝试使用更深的网络结构,如ResNet、DenseNet等,来提高模型的性能。
  4. 调整优化器:本次代码采用SGD优化器,但仍可以尝试使用不同的优化器,如Adam、RMSprop等,来找到最适合我们模型的优化器。
  5. 添加正则化操作:为了防止过拟合,可以添加一些正则化项,如L1正则化、L2正则化等。
  6. 代码目前只有等训练完全结束后才能进入测试阶段,后续可以在每个epoch结束,甚至是指定的迭代次数完成后便进入测试阶段。因为训练完全结束的模型很可能已经过拟合,在测试集上不能表现较强的泛化能力。

完整代码

import torch
import torch.nn as nnimport torch.optim as optim
from torch.utils.data import DataLoaderimport torchvision.models as models
import torchvision.datasets as datasets
import torchvision.transforms as transformsimport warnings
warnings.filterwarnings("ignore")# 定义数据预处理操作
transform = transforms.Compose([transforms.Resize(224), # 将图像大小调整为(224, 224)transforms.ToTensor(),  # 将图像转换为PyTorch张量transforms.Normalize((0.5,), (0.5,))  # 对图像进行归一化
])# 下载并加载MNIST数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)class VGGClassifier(nn.Module):def __init__(self, num_classes):super(VGGClassifier, self).__init__()self.features = models.vgg16(pretrained=True).features  # 使用预训练的VGG16模型作为特征提取器# 重构网络的第一层卷积层,适配mnist数据的灰度图像格式self.features[0] = nn.Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),  # 添加一个全连接层,输入特征维度为512x7x7,输出维度为4096nn.ReLU(True),nn.Dropout(), # 随机将一些神经元“关闭”,有效地防止过拟合。nn.Linear(4096, 4096),  # 添加一个全连接层,输入和输出维度都为4096nn.ReLU(True),nn.Dropout(),nn.Linear(4096, num_classes),  # 添加一个全连接层,输入维度为4096,输出维度为类别数(10))self._initialize_weights()  # 初始化权重参数def forward(self, x):x = self.features(x)  # 通过特征提取器提取特征x = x.view(x.size(0), -1)  # 将特征张量展平为一维向量x = self.classifier(x)  # 通过分类器进行分类预测return xdef _initialize_weights(self):  # 定义初始化权重的方法,使用Xavier初始化方法for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.normal_(m.weight, 0, 0.01)nn.init.constant_(m.bias, 0)# 定义超参数和训练参数
batch_size = 64  # 批处理大小
num_epochs = 5  # 训练轮数(epoch)
learning_rate = 0.01  # 学习率(learning rate)
num_classes = 10  # 类别数(MNIST数据集有10个类别)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")  # 判断是否使用GPU进行训练,如果有GPU则使用第一个GPU(cuda:0)进行训练,否则使用CPU进行训练。# 定义数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)# 初始化模型和优化器
model = VGGClassifier(num_classes=num_classes).to(device)  # 将模型移动到指定设备(GPU或CPU)
criterion = nn.CrossEntropyLoss()  # 使用交叉熵损失函数
optimizer = optim.SGD(model.parameters(), lr=learning_rate)  # 使用随机梯度下降优化器(SGD)# 训练模型
for epoch in range(num_epochs):for i, (images, labels) in enumerate(train_loader):images = images.to(device)  # 将图像数据移动到指定设备labels = labels.to(device)  # 将标签数据移动到指定设备# 前向传播outputs = model(images)loss = criterion(outputs, labels)# 反向传播和优化optimizer.zero_grad()  # 清空梯度缓存loss.backward()  # 计算梯度optimizer.step()  # 更新权重参数if (i + 1) % 100 == 0:  # 每100个batch打印一次训练信息print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, i + 1, len(train_loader),loss.item()))# 训练结束,保存模型参数
torch.save(model.state_dict(), './model.pth')# 加载训练好的模型参数
model.load_state_dict(torch.load('./model.pth'))
model.eval()  # 将模型设置为评估模式,关闭dropout等操作# 定义评估指标变量
correct = 0  # 记录预测正确的样本数量
total = 0  # 记录总样本数量# 测试模型性能
with torch.no_grad():  # 关闭梯度计算,节省内存空间for images, labels in test_loader:images = images.to(device)  # 将图像数据移动到指定设备labels = labels.to(device)  # 将标签数据移动到指定设备outputs = model(images)  # 模型前向传播,得到预测结果_, predicted = torch.max(outputs.data, 1)  # 取预测结果的最大值对应的类别作为预测类别total += labels.size(0)  # 更新总样本数量correct += (predicted == labels).sum().item()  # 统计预测正确的样本数量# 计算模型准确率并打印出来
accuracy = 100 * correct / total  # 计算准确率,将正确预测的样本数量除以总样本数量并乘以100得到百分比形式的准确率。
print('Accuracy of the model on the test images: {} %'.format(accuracy))  # 打印出模型的准确率。

结束语

如果本博文对你有所帮助/启发,可以点个赞/收藏支持一下,如果能够持续关注,小编感激不尽~
如果有相关需求/问题需要小编帮助,欢迎私信~
小编会坚持创作,持续优化博文质量,给读者带来更好de阅读体验~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/224087.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

商城后台管理系统--->新闻简报(富文本编辑器,文章,图片上传)

在商城的项目里面需要添加新闻,使用富文本编辑器,我用的是 wangEditor这个编辑器挺好用的,而且也方便简单,官网也是中文的wangEditor 这是做的添加新闻的页面 我用的是SCUI框架,引入的是npm,具体可看官网 npm install wangedit…

nginx配置kibana代理

1、nginx配置 location /kibana/ {proxy_pass http://192.168.0.32:5601;proxy_redirect off;proxy_set_header Host $host;proxy_set_header X-Real-IP $remote_addr;proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;} 2、kibana配置 server.basePath&#xf…

【Docker实战】基于Dockerfile搭建LNMP+wordpress

一、项目背景和要求 公司在实际的生产环境中,需要使用Docker 技术在一台主机上创建LNMP服务并运行Wordpress网站平台。 然后对此服务进行相关的性能调优和管理工作 二、架构: nginx172.111.0.10docker-nginxmysql172.111.0.20docker-mysqlPHP172.111…

C++试卷

_____________ ________ … 一、单项选择题。(每小题2分, 共20分) 1、下列合法的变量名是( C )。 (A)8d (B) 1_2h   (C)_int (D&…

map 和 multimap 存储区别 、取消自动排序 unordered_map

测试代码 std::map<int, CString > Map1;Map1.insert({ 6, L"HN400*200*11*8" });Map1.insert({ 5, L"HN200*200*11*8" });Map1.insert({ 7, L"HN100*200*11*8" });Map1.insert({ 4, L"HN200*200*11*8" });Map1.insert({ 4, L…

【开发工具】最新VMWare无法识别USB设备,驱动错误,未知错误【2023.12.15】

解决方案1&#xff1a;在这里改下连接方式 多试试 解决方案2 控制面板卸载程序&#xff0c;进行VMWare的修复 解决方案3 对于Windows7系统&#xff0c;切换解决方案1的usb类型为3.1&#xff0c;并下载这个intel的驱动包到虚拟机里 https://www.intel.com/content/www/us/en/do…

科目三 换挡为什么要踩离合器

换挡时需要踩离合器为了切断动力传输&#xff0c;让变速器空转&#xff0c;齿轮才会同步&#xff0c;从而轻松挂挡。 在起步时&#xff0c;当车速达到15km/h时&#xff0c;从一挡换到二挡。 当车速达到25km/h时&#xff0c;可以换成三挡&#xff0c; 达到35km/h左右时&#xf…

华南理工C++试卷

诚信应考 , 考试作弊将带来严重后果&#xff01; 《C程序设计试卷》 注意事项&#xff1a;1. 考前请将密封线内填写清楚&#xff1b; 2. 所有答案请答在试卷的答案栏上&#xff1b; 3&#xff0e;考试形式&#xff1a;闭卷 4. 本试卷共 五 大题&#xff0c;满分100分&#xff…

高效电商策略:小红书集成CRM与广告推广无代码化

无代码开发的优势 随着科技的不断进步&#xff0c;无代码开发&#xff08;No-Code Development&#xff09;已经成为快速构建系统和应用的新趋势。无代码开发指的是不需要传统编程知识&#xff0c;通过图形化的用户界面和模型驱动逻辑来创建应用程序。这种方式让非技术背景的用…

金蝶云星空协同开发环境应用内执行SQL脚本

文章目录 金蝶云星空协同开发环境应用内执行SQL脚本 金蝶云星空协同开发环境应用内执行SQL脚本

中文字符串逆序输出

今天碰到这个题&#xff0c;让我逆序输出中文字符串&#xff0c;可给我烦死了&#xff0c;之前没有遇到过&#xff0c;也是查了资料才知道&#xff0c;让我太汗颜了。 英文字符串逆序输出很容易&#xff0c;开辟一块空间用来存放逆序后的字符串&#xff0c;从后往前遍历原字符串…

操作系统笔记——储存系统、文件系统(王道408)

文章目录 前言储存系统地址转换内存扩展覆盖交换 储存器分配——连续分配固定大小分区动态分区分配动态分区分配算法 储存器分配——非连续分配页式管理基本思想地址变换硬件快表&#xff08;TLB&#xff09;多级页表 段式管理段页式管理 虚拟储存器——基于交换的内存扩充技术…

解决Adams许可文件被篡改问题,确保仿真分析的合法性和安全性

在工程仿真领域&#xff0c;Adams软件是一款广泛使用的动力学分析工具。然而&#xff0c;有时用户会遇到Adams许可文件被篡改的问题&#xff0c;这会给仿真工作带来很大的困扰和风险。为了帮助大家解决这一难题&#xff0c;我们推出了一篇关于Adams许可文件被篡改问题的宣传文章…

题目:区间或 (蓝桥OJ 3691)

题目描述: 解题思路: 本题采用位运算.先求出全部数组每一位各自的前缀和,然后再判断区间内每一位区间和是否为0,不为0则乘上相应的2^n并将各个为的2^n相加,得ans. 实现原理图 题解: #include<bits/stdc.h> using namespace std;const int N 1e5 9;int a[N], prefix[35…

线程核绑定

● CPU频率&#xff1a; ○ CPU内部的数字时钟信号频率&#xff0c;又称为时钟频率&#xff0c;并不能代表CPU的真实性能水平。 ○ 由于RC电路的限制&#xff0c;信号的时钟频率不能太大。 ● 超频&#xff1a; ○ 提高硬件的工作频率&#xff0c;让它们在高于其额定的频率状态…

ANSYS 有限元分析 后处理 结点解与单元解-命令流对应的GUI操作

本文是对这篇文章中的命令流寻找其对应的GUI操作&#xff08;如果有&#xff09;&#xff1a; ANSYS 有限元分析 后处理 结点解与单元解-CSDN博客 下面这个对应的GUI操作为在官方帮助文档Ansys_Mechanical_APDL_Command_Reference_2中查到的&#xff0c;对应的版本是2022R2&a…

20231215给AIO-3399J适配Rockchip的原始Andoroid10的挖掘机开发板02

20231215给AIO-3399J适配Rockchip的原始Andoroid10的挖掘机开发板02 2023/12/15 15:37 【请严重注意&#xff1a;】如果刷不适配的SDK&#xff0c;可能会引起您的开发板【硬件发生物理】损坏&#xff01; 如果您按照本步骤刷机引起的一切后果&#xff0c;请自行承担责任&#x…

Day09 Liunx高级系统设计11-数据库1

MySQL 简介 数据库DB 数据库&#xff08; DataBase &#xff0c; DB &#xff09;从本质上讲就是一个文件系统&#xff0c;它能够将数据有组织地集合在一起&#xff0c;按照一定的规则长期存储到计算机的磁盘中&#xff0c;并且能够供多个用户共享和使用&#xff0c;同时&…

Linux篇:信号

一、信号的概念&#xff1a; ①进程必须识别能够处理信号&#xff0c;信号没有产生&#xff0c;也要具备处理信号的能力---信号的处理能力属于进程内置功能的一部分 ②进程即便是没有收到信号&#xff0c;也能知道哪些信号该怎么处理。 ③当进程真的受到了一个具体的信号的时候…

网络安全之计算机网络基础知识<二>

目录 一.IP与端口二.HTTP协议分析 一.IP与端口 IP地址&#xff1a;指互联网协议地址。是IP协议提供的地址格式&#xff0c;为互联网上的每一个网络和每一个主机分配一个逻辑地址&#xff0c;以此来屏蔽物理地址的差异。 简单来说&#xff0c;IP地址是电子设备&#xff08;计算…