Amortized Bootstrapping of LWE:使用 BFV 打包处理

参考文献:

  1. [AP13] Alperin-Sheriff J, Peikert C. Practical bootstrapping in quasilinear time[C]//Annual Cryptology Conference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 1-20.
  2. [MS18] Micciancio D, Sorrell J. Ring packing and amortized FHEW bootstrapping[J]. Cryptology ePrint Archive, 2018.
  3. [CHKKS19] Cheon J H, Han K, Kim A, et al. A full RNS variant of approximate homomorphic encryption[C]//Selected Areas in Cryptography–SAC 2018: 25th International Conference, Calgary, AB, Canada, August 15–17, 2018, Revised Selected Papers 25. Springer International Publishing, 2019: 347-368.
  4. [CDKS21] Chen H, Dai W, Kim M, et al. Efficient homomorphic conversion between (ring) LWE ciphertexts[C]//International Conference on Applied Cryptography and Network Security. Cham: Springer International Publishing, 2021: 460-479.
  5. [INZ21] Iliashenko I, Negre C, Zucca V. Integer functions suitable for homomorphic encryption over finite fields[C]//Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography. 2021: 1-10.
  6. [LW23] Liu Z, Wang Y. Amortized Functional Bootstrapping in less than 7ms, with $\tilde {O}(1) $ polynomial multiplications[J]. Cryptology ePrint Archive, 2023.
  7. Amortized FHEW bootstrapping
  8. Chimera:混合的 RLWE-FHE 方案
  9. Pegasus:CKKS 和 TFHE 的混合

文章目录

  • Interpolation over finite fields
    • Lemma
    • Unary functions
  • Batched LWE ciphertext bootstrapping
    • NAND Gate
    • Optimizations
    • Other Binary Gates
    • Arbitrary Functions
    • Scheme Switching
  • Evaluation

Interpolation over finite fields

对于 p p p 次插值多项式,使用通用的 Paterson-Stockmeyer 多项式求值算法,复杂度为 2 p + O ( log ⁡ p ) \sqrt{2p}+O(\log p) 2p +O(logp)

[INZ21] 利用素域的性质,给出了某些特殊函数的更高效的插值多项式:取模、判断幂次、汉明重量、模二、比较。

Lemma

奇素数 p ≥ 3 p\ge3 p3,素域 Z p \mathbb Z_p Zp

  • 对于任意的 e ∈ [ 0 , p − 2 ] e \in [0,p-2] e[0,p2],都有
    ∑ a ∈ G F ( p ) a e = 0 ( m o d p ) \sum_{a \in GF(p)} a^e = 0 \pmod p aGF(p)ae=0(modp)

  • 对于任意的 a , b ∈ Z p a,b \in \mathbb Z_p a,bZp,都有
    ( a − b ) p − 1 = ∑ i = 0 p − 1 a i b p − 1 − i ( m o d p ) (a-b)^{p-1} = \sum_{i=0}^{p-1} a^ib^{p-1-i} \pmod p (ab)p1=i=0p1aibp1i(modp)

  • 根据 Fermat Little Theorem,等性检测的二元多项式:
    E Q ( x , y ) = 1 − ( x − y ) p − 1 EQ(x,y) = 1-(x-y)^{p-1} EQ(x,y)=1(xy)p1

  • 任意的函数 f : Z p n → Z p f: \mathbb Z_p^n \to \mathbb Z_p f:ZpnZp 都可以唯一表示为多元多项式 P f ( X 1 , ⋯ , X n ) P_f(X_1,\cdots,X_n) Pf(X1,,Xn),各个变元的次数不超过 p − 1 p-1 p1,具体的插值多项式为
    P f ( X 1 , ⋯ , X n ) = ∑ a ⃗ ∈ Z p n f ( a ⃗ ) ∏ i = 1 n ( 1 − ( X i − a i ) p − 1 ) P_f(X_1,\cdots,X_n) = \sum_{\vec a \in \mathbb Z_p^n} f(\vec a) \prod_{i=1}^n (1-(X_i-a_i)^{p-1}) Pf(X1,,Xn)=a Zpnf(a )i=1n(1(Xiai)p1)

Unary functions

设置 n = 1 n=1 n=1,那么任意的 f : Z p → Z p f: \mathbb Z_p \to \mathbb Z_p f:ZpZp 可以插值为:
P f ( X ) = ∑ i = 0 p − 1 f ( a ) ⋅ ( 1 − ( X − a ) p − 1 ) = f ( 0 ) − ∑ i = 1 p − 1 ( ∑ a = 0 p − 1 f ( a ) a p − 1 − i ) ⋅ X i \begin{aligned} P_f(X) &= \sum_{i=0}^{p-1} f(a) \cdot (1-(X-a)^{p-1})\\ &= f(0) - \sum_{i=1}^{p-1} \left( \sum_{a=0}^{p-1} f(a)a^{p-1-i} \right) \cdot X^i \end{aligned} Pf(X)=i=0p1f(a)(1(Xa)p1)=f(0)i=1p1(a=0p1f(a)ap1i)Xi
我们希望 P f ( X ) P_f(X) Pf(X) 越稀疏越好。[INZ21] 观察到,假设 ζ k \zeta_k ζk 是本原单位根,满足 k ∣ p − 1 k \mid p-1 kp1,将 Z p ∗ \mathbb Z_p^* Zp 分为 k k k 个子集 { S 0 , ⋯ , S k − 1 } \{S_0,\cdots,S_{k-1}\} {S0,,Sk1} 的不交并,
S j = ζ k j S 0 , ∀ 0 ≤ j < k S_j = \zeta_k^j S_0,\,\, \forall 0\le j < k Sj=ζkjS0,∀0j<k
那么,

  • 对于那些 k ∣ i k \mid i ki 的系数索引,
    ∑ a ∈ S 0 a p − 1 − i = 0 \sum_{a \in S_0} a^{p-1-i} = 0 aS0ap1i=0

  • 假如 f f f 在每个 S j S_j Sj 上都是常数,
    f ( a ) = c j , ∀ a ∈ S j f(a) = c_j,\,\, \forall a \in S_j f(a)=cj,aSj
    那么 P f ( X ) P_f(X) Pf(X) 的所有 X i , k ∣ i X^i,k \mid i Xi,ki 的系数都为零

Batched LWE ciphertext bootstrapping

[MS18] 最先给出了 FHEW 的批处理自举,均摊成本 O ( 3 ϵ ⋅ n 1 / ϵ ) , ∀ ϵ > 0 O(3^\epsilon \cdot n^{1/\epsilon}), \forall \epsilon>0 O(3ϵn1/ϵ),ϵ>0,然而结构复杂,没有给出具体实现。之后有若干工作,也给出了批处理的 LWE 自举算法。

[LW23] 直接使用 BFV 的 SIMD 性质(并非 ACC + LUT)来批量自举 LWE 密文。简单来说:

  1. 输入若干 LWE 密文,堆叠为矩阵形式 ( A , b ) (A,b) (A,b)
  2. 采取 Pegasus 的同态线性变换,在 BFV 的明文槽中解密出 μ ⃗ = b − A s \vec \mu=b-As μ =bAs
  3. 将函数 f f f 插值为多项式,同态计算出 f ( μ ⃗ ) {f(\vec\mu)} f(μ ),这是 Slot-Packing 打包的
  4. 采取 Slot-to-Coeff 技术同态解码,此时 BFV 加密 f ( μ ⃗ ) f(\vec\mu) f(μ ) 的 Coeff-Packing
  5. 使用 Extract 提取出 LWE 密文

最终,均摊成本是 O ~ ( 1 ) \tilde O(1) O~(1) 多项式乘法。他们选取的参数下,均摊运行时间小于 7 7 7 毫秒。

LWE 方案(MSD 编码)

  • 维度 n n n:要求整除 N N N
  • 密文模数 q q q
  • 明文模数 p p p
  • 私钥 s k sk sk:自重复打包在 BFV 密文中,简记 b f v c t s k = B F V s ( E c d ( s k ∥ ⋯ ∥ s k , Δ ) ) bfvct_{sk}=BFV_{s}(Ecd(sk\|\cdots\|sk,\Delta)) bfvctsk=BFVs(Ecd(sksk,Δ))

BFV 方案(MSD 编码)

  • 维度 N N N:二的幂次
  • 密文模数 Q Q Q:满足 RNS 系统
  • 明文模数 t t t:设置为 t = q t=q t=q,自动取模
  • 私钥 s k B F V = s ( x ) sk_{BFV}=s(x) skBFV=s(x)
  • 公钥 p k pk pk,重线性化密钥 e v k evk evk(同态乘法),旋转密钥 r t k rtk rtk(同态旋转)
  • 秘钥切换密钥 K s → s k K_{s \to sk} Kssk:运算完成之后从 BFV 切换回 LWE

在算法中,使用了 Pegaus 的同态线性变换:

在这里插入图片描述

NAND Gate

回顾下 FHEW 怎么计算 NAND Gate,

  1. Z 2 \mathbb Z_2 Z2 提升到 Z 4 \mathbb Z_4 Z4,算术加法 μ ′ = μ 1 + μ 2 ( m o d 4 ) \mu' = \mu_1+\mu_2 \pmod 4 μ=μ1+μ2(mod4)
  2. 使用 LUT,如果 μ ′ = 2 \mu'=2 μ=2 查表出 μ ← 1 ∈ Z 2 \mu \gets 1 \in \mathbb Z_2 μ1Z2(存放在 Z 4 \mathbb Z_4 Z4 中),否则查表出 μ ← 0 \mu \gets 0 μ0

当然,这个 LUT 的 domain 和 range 都应当缩放为它们在 Z q \mathbb Z_q Zq 上的编码值,并且旋转一定的角度使得它成为 Negacyclic 函数。

[LW23] 采用了 p = 3 p=3 p=3(而不是 p = 4 p=4 p=4),那么
b i − ⟨ a i , s k ⟩ = ⌊ q / 3 ⌉ ⋅ μ i + e i b_i - \langle a_i,sk \rangle = \lfloor q/3\rceil \cdot \mu_i + e_i biai,sk=q/3μi+ei
我们要求 ∣ e i ∣ < ⌊ q / 12 ⌋ |e_i| < \lfloor q/12 \rfloor ei<q/12,从而 ∣ e 1 + e 2 ∣ < ⌊ q / 6 ⌋ |e_1+e_2| < \lfloor q/6 \rfloor e1+e2<q/6 解密正确。方便起见,[LW23] 将 c i = ( a i , b i ) c_i=(a_i,b_i) ci=(ai,bi) 的相位旋转 q / 6 q/6 q/6 使得噪声是非负数,得到 c i ′ = ( a i , b i + ⌊ q / 6 ⌋ ) c_i'=(a_i,b_i+\lfloor q/6 \rfloor) ci=(ai,bi+q/6⌋)

那么,给定 c = c 1 + c 2 c=c_1+c_2 c=c1+c2
b − ⟨ a , s k ⟩ ∈ { 0 + e 1 + e 2 ∈ [ 0 , ⌊ q / 3 ⌋ ) , μ 1 = μ 2 = 0 ⌊ q / 3 ⌋ + e 1 + e 2 ∈ [ ⌊ q / 3 ⌋ , 2 ⌊ q / 3 ⌋ ) , o t h e r w i s e 2 ⌊ q / 3 ⌋ + e 1 + e 2 ∈ [ 2 ⌊ q / 3 ⌋ , q ) μ 1 = μ 2 = 1 b - \langle a,sk \rangle \in \left\{\begin{aligned} 0+e_1+e_2 &\in [0, \lfloor q/3\rfloor),&& \mu_1=\mu_2=0\\ \lfloor q/3\rfloor+e_1+e_2 &\in [\lfloor q/3\rfloor, 2\lfloor q/3\rfloor),&& otherwise\\ 2\lfloor q/3\rfloor+e_1+e_2 &\in [2\lfloor q/3\rfloor, q)&& \mu_1=\mu_2=1\\ \end{aligned}\right. ba,sk 0+e1+e2q/3+e1+e22q/3+e1+e2[0,q/3⌋),[⌊q/3,2q/3⌋),[2q/3,q)μ1=μ2=0otherwiseμ1=μ2=1
因此,我们定义 NAND Gate 对应的 LUT:
f ( x ) = { 0 , x ∈ [ 2 ⌊ q / 3 ⌋ , q ) ⌊ q / 3 ⌋ , o t h e r w i s e f(x) = \left\{\begin{aligned} 0,&& x \in [2\lfloor q/3\rfloor, q)\\ \lfloor q/3\rfloor,&& otherwise \end{aligned}\right. f(x)={0,q/3,x[2q/3,q)otherwise
[LW21] 将它称为 DRaMDivision, Rounding, and Mapping)。我们将它在素域 Z q \mathbb Z_q Zq 上插值为多项式:
P f ( x ) = f ( 0 ) − ∑ i = 1 q − 1 ( ∑ a = 0 q − 1 f ( a ) a q − 1 − i ) ⋅ X i P_f(x) = f(0) - \sum_{i=1}^{q-1} \left( \sum_{a=0}^{q-1} f(a)a^{q-1-i} \right) \cdot X^i Pf(x)=f(0)i=1q1(a=0q1f(a)aq1i)Xi
注意,BFV 可以计算任意的多项式,并没有 Negacyclic 的约束

现在的计算任务就是:
c ∈ Z q n + 1 ↦ P f ( [ b − ⟨ a , s k ⟩ ] q ) ∈ Z q c \in \mathbb Z_q^{n+1} \mapsto P_f\big([b-\langle a,sk\rangle]_q\big) \in \mathbb Z_q cZqn+1Pf([ba,sk]q)Zq
内积运算采取 Pegasus 的同态下线性变换,多项式求值运算采取 Paterson-Stockmeyer 算法。这些运算都是在 BFV Slots 上执行的,最后需要使用 [CHKKS18] 的同态解码算法(可以直接使用 Pegasus 的同态下线性变换,但存在更快的 FFT-style 算法 [HHC19])。

我们设置 BFV 明文空间 t = q t=q t=q 使得它自动模掉 LWE 的密文模数,批处理 N N N 个 LWE 密文(占满 BFV Slots),LWE 的私钥 s k ∈ Z q n sk \in \mathbb Z_q^n skZqn 被重复打包 N / n N/n N/n 次。具体算法如下:

在这里插入图片描述

Optimizations

  1. 如果某函数形如:
    f ( x ) = { 0 , ∀ x ∈ ( − r , r ) c , o t h e r w i s e f(x) = \left\{\begin{aligned} 0,&& \forall x \in (-r,r)\\ c,&& otherwise \end{aligned}\right. f(x)={0,c,x(r,r)otherwise
    其中 r ∈ [ 2 , ⌊ q / 2 ⌋ ] , c ∈ Z q r \in [2,\lfloor q/2\rfloor], c \in \mathbb Z_q r[2,q/2⌋],cZq 都是常数,那么它对应的 P f P_f Pf 的系数有大约一半是零。因此,我们扭曲 NAND LUT 相位 + ⌊ q / 6 ⌋ +\lfloor q/6 \rfloor +q/6,对应的扭曲 LWE 密文为 ( a , b − 2 ⌊ q / 3 ⌋ − ⌊ q / 6 ⌋ ) (a, b-2\lfloor q/3 \rfloor-\lfloor q/6 \rfloor) (a,b2q/3q/6⌋)

  2. 在 Pegaus 的同态线性变换中,采取了 BSGS 技巧,需要使用 b f v c t s k bfvct_{sk} bfvctsk 分别旋转 i ⋅ n , ∀ i ∈ [ n ] i \cdot \sqrt n, \forall i \in [\sqrt n] in ,i[n ] 个位置,这个可以被 KeyGen 时预计算(空间换时间)

  3. 计算 DRaM 花费了较深的电路,我们直降将 b f v c t 3 bfvct_3 bfvct3 模切换到更低的模数 Q ′ ≪ Q Q' \ll Q QQ 上,然后再执行后续的 S2C(需要额外计算 Q ′ Q' Q 下的旋转密钥 r t k ′ rtk' rtk

  4. 不再各个 LWE 密文分别 Key-Switch,我们可以在 b f v c t 5 bfvct_5 bfvct5 上执行 RLWE-KS,目标 s → s ′ s \to s' ss 是关于 s k sk sk 的(使得 Extract 恰好是 s k sk sk 加密的)

Other Binary Gates

一个重要的观察是 BFV 是以 SIMD 范式执行的,因此全部的槽都执行同一个 DRaM 多项式:它将 x ∈ [ 2 ⌊ q / 3 ⌋ , q ) x \in [2\lfloor q/3\rfloor, q) x[2q/3,q) 映射到 0 0 0,其余的都映射到 ⌊ q / 3 ⌋ \lfloor q/3\rfloor q/3

虽然 NAND 是完备的,但是只用 NAND 搭建电路,其规模会较大。为了使得不同的槽可以执行任意的 Binary Gates,[LW23] 的思路是 “预处理+后处理”,使得全部的 Gates 都共用这个 DRaM 函数。

算法如下:

在这里插入图片描述

这个预处理和后处理的速度都是非常快的(仅仅是 b ∈ Z q b \in \mathbb Z_q bZq 上的加减法),其开销可以忽略。

Arbitrary Functions

对于更高精度的函数 f : Z p → Z q f: \mathbb Z_p \to \mathbb Z_q f:ZpZq,其中的 p ≥ 3 p \ge 3 p3 是任意素数,依旧可以采用上述的算法。唯一的修改就是我们在线构造 P f P_f Pf 多项式,并要求 LWE 密文噪声满足 ∣ e ∣ ≤ ⌊ q / 2 p ⌋ |e| \le \lfloor q/2p \rfloor eq/2p 从而解密正确。

算法如下:

在这里插入图片描述

Scheme Switching

易知:

  • LWE 是 MSD 编码的,采用 [AP13] 的技术可以实现 BFV to/from BGV 的方案切换
  • Pegasus 的同态线性变换就是 FHEW/TFHE to BFV/BGV 的方案切换
  • [CHKKS18] 的 S2C 就是 BFV/BGV to FHEW/TFHE 的方案切换

Evaluation

参数:

在这里插入图片描述

效率:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/223993.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(四)

系列文章目录 基于CNN数据增强残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)数据集模型&#xff08;一&#xff09; 基于CNN数据增强残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)数据集模型&#xf…

【动手学深度学习】(十四)数据增广+微调

文章目录 一、数据增强1.理论知识2.代码 二、微调1.理论知识 一、数据增强 1.理论知识 增加一个已有数据集&#xff0c;使得有更多的多样性 在语言里面加入各种不同的背景噪音改变图片的颜色和形状 使用增强数据训练 翻转 左右翻转上下翻转 不总是可行 切割 从图片中切…

【高效开发工具系列】DataGrip入门

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

文件操作2❤

一&#xff1a;文件的顺序读写 1&#xff1a;顺序读写函数 函数名 功能 适⽤于 fgetc 字符输⼊函数 所有输⼊流 fputc 字符输出函数 所有输出流 fgets ⽂本⾏输⼊函数 所有输⼊流 fputs ⽂本⾏输出函数 所有输出流 fscanf 格式化…

linux系统中出现大量不可中断进程和僵尸进程怎么办?

进程状态 当iowait升高时&#xff0c;进程很可能因为得不到硬件的响应&#xff0c;而长时间处于不可中断的状态&#xff0c;从ps或者top命令的输出中&#xff0c;可以发现它们都处于D状态&#xff0c;也就是不可中断状态。 通过top和ps可以查看进程的状态&#xff0c;S列表示…

Python学习开发mock接口

#1.测试为什么要开发接口&#xff1f; 1)在别的接口没有开发好的时候, mock接口(模拟接口) 2)查看数据, 避免直接操作数据库 #2.开发接口的顺序 1)安装flask flask是一个轻量级开发框架 pip install flask 2)开发一个接口 开发步骤&#xff1a; 1.实例化一个服务server:f…

普冉(PUYA)单片机开发笔记(9): FLASH 读写

概述 单片机的 ROM 容量虽然不大&#xff0c;PY32F003 有 64K 字节的 ROM&#xff0c;但实际应用中会在 MCU 中存储持久化的数据&#xff0c;例如&#xff1a;在物联网应用中&#xff0c;需要把物模型持久化&#xff0c;作为非易失性数据&#xff0c;掉电了也要保存。这就要用…

1845_emacs中一个中文乱码问题分析解决

Grey 全部学习内容汇总&#xff1a;GitHub - GreyZhang/editors_skills: Summary for some common editor skills I used. 1845_emacs中一个中文乱码问题分析解决 曾经有一次放弃过我自己的emacs配置&#xff0c;一个原因就是中文的支持。感觉我的配置跟其他人的配置显得有些…

深度学习(生成式模型)——ADM:Diffusion Models Beat GANs on Image Synthesis

文章目录 前言基础模型结构UNet结构Timestep Embedding关于为什么需要timestep embedding global attention layer 如何提升diffusion model生成图像的质量Classifier guidance实验结果 前言 在前几篇博文中&#xff0c;我们已经介绍了DDPM、DDIM、Classifier guidance等相关的…

leetcode做题笔记2415. 反转二叉树的奇数层

给你一棵 完美 二叉树的根节点 root &#xff0c;请你反转这棵树中每个 奇数 层的节点值。 例如&#xff0c;假设第 3 层的节点值是 [2,1,3,4,7,11,29,18] &#xff0c;那么反转后它应该变成 [18,29,11,7,4,3,1,2] 。 反转后&#xff0c;返回树的根节点。 完美 二叉树需满足…

【STM32单片机】旋转太空人设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用STM32F103C8T6单片机控制器&#xff0c;使IIC OLED液晶等。 主要功能&#xff1a; 系统运行后&#xff0c;OLED显示动画界面。 二、软件设计 /* 作者&#xff1a;嗨小易&#xff08;QQ&#x…

vue中实现PDF文件流预览

代码示例 <template><div class"print"><div v-if"!viewShow" class"opt-box"><div style"height: 700px; overflow: auto;"><el-table :data"tableData" border><el-table-column prop…

HTML基础标签

但实际上无论声明为中文还是英文都可以写&#xff0c;中文/英文 主要是浏览器在进行调用翻译功能的时候&#xff0c;会按照声明的语言来进行翻译。 标签语义&#xff1a; 标签的属性一般都是在第一个标签中定义该标签效果所拥有的属性。 即标签的作用是什么 <>标签功能…

CSS——标准流、浮动、Flex布局

1、标准流 标准流也叫文档流&#xff0c;指的是标签在页面中默认的排布规则&#xff0c;例如&#xff1a;块元素独占一行&#xff0c;行内元素可以一行显示多个。 2、浮动 作用&#xff1a;让块元素水平排列 属性名&#xff1a;float 属性值&#xff1a; left&#xff1a;…

做为一个产品经理带你详细了解--动态面板的使用

&#x1f4da;&#x1f4da; &#x1f3c5;我是bing人&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;在这里&#xff0c;我要推荐给大家我的专栏《Axure》。&#x1f3af;&#x1f3af; &#x1f680;无论你是编程小白&#xff0c;还是有一…

卫星影像5天一更新的地图网站

如果全球影像每5天一更新&#xff0c;并集多种地图数据源于一体的PB级海量地图数据该怎样去管理呢&#xff1f; 这是当我了解到SOAR网站之后&#xff0c;思考过的一个问题。 全球最大的在线地图网站 在SOAR的官方网站&#xff0c;据称它是世界上最大的在线地图网站。 它是集…

如何远程访问Axure RP制作的本地web站点实现协同办公

文章目录 前言1.在AxureRP中生成HTML文件2.配置IIS服务3.添加防火墙安全策略4.使用cpolar内网穿透实现公网访问4.1 登录cpolar web ui管理界面4.2 启动website隧道4.3 获取公网URL地址4.4. 公网远程访问内网web站点4.5 配置固定二级子域名公网访问内网web站点4.5.1创建一条固定…

深入理解Java关键字volatile

前置知识-了解以下CPU结构 如下图所示&#xff0c;每个CPU都会有自己的一二级缓存&#xff0c;其中一级缓存分为数据缓存和指令缓存&#xff0c;这些缓存的数据都是从内存中读取的&#xff0c;而且每次都会加载一个cache line&#xff0c;关于cache line的大小可以使用命令cat…

stm32与Freertos入门(二)移植FreeRTOS到STM32中

简介 注意&#xff1a;FreeRTOS并不是实时操作系统&#xff0c;而是分时复用的&#xff0c;只不过切换频率很快&#xff0c;感觉上是同时在工作。本次使用的单片机型号为STM32F103C8T6,通过CubeMX快速移植。 一、CubeMX快速移植 1、选择芯片 打开CubeMX软件&#xff0c;进行…

(独白)我为什么选择了计算机行业?

为什么可能很简单&#xff0c;但为什么的为什么就有点长了。就当作讲故事吧 在高中毕业后选择专业时&#xff0c;和大多数人一样&#xff0c;我根本不知道要选择什么专业&#xff0c;更不知道哪个专业发展前景好&#xff0c;哪个专业好就业。在当时比较火的专业我记得应该是土…