宏基因组学及宏转录组学分析工具MOCAT2(Meta‘omic Analysis Toolkit 2)安装配置及常用使用方法

详细介绍

尽管这个工具已经暂停后续开发,但其工具功能还是挺好的,大家可以参考一下,尤其对于喜欢自定义开发流程的可以参考是流程。

MOCAT 2(Meta'omic Analysis Toolkit 2)是一个用于宏基因组和宏转录组数据分析的工具集,旨在处理和分析来自各种环境样品(如土壤、水体、肠道等)的宏基因组学和宏转录组学数据。它提供了一系列功能模块,涵盖了数据预处理、序列比对、装配、功能注释和分析等方面。

文章:

MOCAT: A Metagenomics Assembly and Gene Prediction Toolkit | PLOS ONE

官网:MOCAT2

github:GitHub - mocat2/mocat2: Latest MOCAT2 version

 MOCAT 2的主要特点和功能:

  1. 综合性:支持宏基因组学和宏转录组学数据的处理和分析,能够应用于不同类型的元组件(metagenome、metatranscriptome)数据。

  2. 数据预处理:包括质量控制、去除PCR重复、去除低质量序列、去除宿主序列等预处理步骤,以准备数据用于后续分析。

  3. 序列比对:能够进行序列比对到参考数据库,对元组件数据进行分类、注释等。

  4. 序列装配:支持元组件数据的序列装配,得到组装得到的序列。

  5. 功能注释和分析:提供了功能注释和分类分析模块,能够进行基于注释的功能分析,如基因功能注释、基因家族分析等。

  6. 并行计算:支持多线程并行计算,能够加速数据处理和分析的速度。

  7. 灵活性:提供了多种配置选项和参数,可根据不同的实验设计和数据类型进行定制化处理和分析。

  8. 支持多种数据格式:能够处理和分析常见的测序数据格式,如FASTQ、FASTA等。

MOCAT 2的使用流程:

MOCAT 2的使用流程包括数据准备、选择合适的模块和参数、运行分析、结果解释和分析等步骤。用户可以根据实验设计和数据类型选择合适的模块和参数进行分析,并根据分析结果进行后续的生物信息学分析或实验设计。

官方文档和资源:

MOCAT 2提供了详细的官方文档和使用指南,其中包括安装指南、使用教程、参数说明等,可在官方网站或GitHub页面获取相关信息和支持:

MOCAT2(Meta'omic Analysis Toolkit 2)是用于宏基因组和宏转录组数据分析的工具,提供了一系列功能用于质量控制、序列比对、装配、注释等。以下是MOCAT2的基本使用方法和分析流程:

安装 MOCAT2:

MOCAT2可以从其官方网站或GitHub页面获取源代码,并且在Linux环境下进行编译安装。可以参考官方文档提供的安装指南进行安装:MOCAT2 GitHub

1. 安装依赖项

在开始安装MOCAT2之前,需要确保系统中已安装以下依赖项:

  • Python 2.7 或更高版本
  • C++ 编译器(如GCC)
  • Perl 5 或更高版本
  • Perl模块:DB_File、Math::Round、List::Util、Digest::MD5
  • 某些功能可能需要安装其他外部工具,如Bowtie2、BLAST等

2. 下载源代码

可以从MOCAT2的GitHub页面获取源代码。在终端中运行以下命令来克隆MOCAT2的代码库:

git clone https://github.com/mocat2/mocat2.git

 进入安装目录,运行设置脚本

#
cd mocat2/stable/2.1.3
./setup.MOCAT2.pl#或
perl ./setup.MOCAT2.pl

 要不要下载扩展数据库或要不要下载文章数据集,我这里都选择了no,因为感觉用不上。大家可根据需求下载

MOCAT2的一些常见模块及其输出结果文件的内容展示和介绍:

1. mocat_preprocessing 模块:

  • 输出文件
    • clean_reads_1.fastqclean_reads_2.fastq: 经过质量控制和预处理后的测序数据。
    • summary_statistics.txt: 包含关于质量控制步骤的统计信息,如序列数目、质量分数统计等。

2. mocat_assembly 模块:

  • 输出文件
    • contigs.fasta: 组装得到的contigs序列。
    • assembly_stats.txt: 包含有关组装质量和性能的统计信息,如N50、最大/最小contig长度等。

3. mocat_analysis 模块:

  • 输出文件
    • blast_results.txt:包含BLAST注释的结果,显示序列与参考数据库的相似性。
    • gene_catalog.fasta:根据比对结果生成的基因目录序列。
    • functional_annotation.txt:功能注释的结果文件,包括基因或序列的功能描述、KEGG或COG注释等信息。
    • classification_results.txt:分类结果,显示序列或基因的分类信息,如菌株、属、门水平的分类等。

4. mocat_metaquant 模块(可选,用于定量分析):

  • 输出文件
    • gene_abundance_table.txt:基因丰度表,显示每个基因在样本中的丰度估算。
    • transcript_abundance_table.txt:转录本丰度表,显示转录本在样本中的丰度估算。
    • 其他可能包含样本丰度信息的文件。

注意事项:

  • 每个模块生成的输出文件格式和内容可能会因应用不同参数和实验设计而有所不同。
  • 结果文件中包含的信息可以帮助研究人员了解数据质量、序列注释信息、组装质量和功能注释等方面的信息。
  • 输出文件中的数据通常以文本或FASTA等格式呈现,可以使用文本编辑器或专业的生物信息学软件进行查看和进一步分析。

MOCAT2 使用流程:

数据准备

  • 获得宏基因组/宏转录组测序数据(FASTQ格式)。
  • 准备参考数据库,如基因组数据库或功能注释数据库。

运行 MOCAT2

MOCAT2的主要模块和使用示例命令如下:

mocat_preprocessing:进行质量控制和预处理。

mocat_preprocessing -t 4 -o output_directory --input-files reads_1.fastq,reads_2.fastq

mocat_assembly:执行序列组装。

mocat_assembly -t 4 -o output_directory --input-files reads_1.fastq,reads_2.fastq

mocat_analysis:进行功能注释和分类分析。

mocat_analysis -t 4 -o output_directory --input-files assembly.fa

这里的 -t 选项用于指定线程数,-o 用于指定输出目录,--input-files 用于指定输入文件。

结果解释和分析

MOCAT2生成的输出文件包括装配得到的序列、注释结果、分类信息等。可以使用其他工具或分析流程进一步解释和分析这些结果。

示例代码:

以下是一个使用MOCAT2的简单Shell脚本示例,演示了一个简单的分析流程:

# 质量控制和预处理
mocat_preprocessing -t 4 -o preprocessing_output --input-files reads_1.fastq,reads_2.fastq# 序列组装
mocat_assembly -t 4 -o assembly_output --input-files preprocessing_output/clean_reads_1.fastq,preprocessing_output/clean_reads_2.fastq# 功能注释和分类分析
mocat_analysis -t 4 -o analysis_output --input-files assembly_output/contigs.fasta

注意事项:

  • MOCAT2提供了丰富的功能和模块,具体的使用方法和参数设置需要根据数据类型和实验设计进行调整。
  • 分析过程可能需要较长的时间和较大的计算资源,特别是对于大规模的宏基因组/宏转录组数据。
  • 根据数据类型和分析需求,可能需要进一步的后续分析和解释。

MOCAT.pl全参数帮助信息

MOCAT.pl --help
===============================================================================MOCAT - Metagenomics Analysis Toolkit                 v2.1.3by Jens Roat Kultima, Luis Pedro Coelho, Shinichi Sunagawa @ Bork Group, EMBL
===============================================================================Full manual & FAQ: MOCAT.pl -manHow to cite MOCAT: MOCAT.pl -citeHave you tried the wrapper runMOCAT.sh? Try it!Usage: MOCAT.pl -sf|sample_file 'FILE' [Pipeline, Statistics, & Additional Options]'FILE'Contains the list of folder names (sample names), one per line,in which the raw sample data is locatedExamplesProcess, Assemble, Revise Assembly, Predict Genes, cluster genes into gene catalog, annotate gene catalog, profile against gene catalogMOCAT.pl -sf my.samples -rtfMOCAT.pl -sf my.samples -aMOCAT.pl -sf my.samples -gp assemblyMOCAT.pl -sf my.samples -make_gene_catalog -assembly_type assemblyMOCAT.pl -sf my.samples -annotate_gene_catalogMOCAT.pl -sf my.samples -s my.samples.padded -identity 95MOCAT.pl -sf my.samples -f my.samples.padded -identity 95MOCAT.pl -sf my.samples -p my.samples.padded -identity 95 -mode functionalAssemble and predict genes: MOCAT.pl -sf my.samples -rtf(no screen)               MOCAT.pl -sf my.samples -aMOCAT.pl -sf my.samples -gp assemblyfetch marker genes:       MOCAT.pl -sf my.samples -fmg assemblyMOCAT.pl -sf my.samples -ssAssemble and predict genes: MOCAT.pl -sf my.samples -rtf(DB screen)               MOCAT.pl -sf my.samples -s hg19 -screened_files -identity 90MOCAT.pl -sf my.samples -a -r hg19MOCAT.pl -sf my.samples -gp assembly -r hg19MOCAT.pl -sf my.samples -ssAssemble and predict genes: MOCAT.pl -sf my.samples -rtf(remove eg. adapters      MOCAT.pl -sf my.samples -sff adapters.fa -screened_filesand then DB screen)      MOCAT.pl -sf my.samples -bwa hg19 -r adapters.fa  -screened_filesMOCAT.pl -sf my.samples -a -r screened.adapters.fa.on.hg19MOCAT.pl -sf my.samples -gp assembly -r screened.adapters.fa.on.hg19MOCAT.pl -sf my.samples -ssPipeline Options-r|reads ['reads.processed', 'DATABASE' or 'FASTA FILE']Required for all pipeline options, except rtf|read_trim_filterSpecify whether processing trim & filtered, or screened reads.A default value to this setting can also be specified in config file-e|extractedOptional for all pipeline options, except rtf|read_trim_filter, see full manual-rtf|read_trim_filterperforms trimming and filtering of reads-a|assemblyPerforms assembly of reads-ar|assembly_revisionFurther improves assemblies-gp|gene_prediction ['assembly', 'assembly.revised']Predicts protein coding genes on assemblies-fmg|fetch_mg ['assembly', 'assembly.revised']Extracts marker genes among the predicted genes-soap|bwa ['DB1 DB2 ...',s,c,f,r]Screen, extract and map reads against a reference databse (hg19 is provided) or (s)acftigs,(c)ontigs, sca(f)folds from an assembly, or scaftigs from a (r)evised assembly.This mapping step uses SOAPaligner2 (soap) or BWA (bwa).Additional options:-screened_files : If set, screened read files are generated, these are reads not matching the DB-extracted_files : If set, extracted read files are generated, these are reads matching the DB-use_mem  : If set, copies the DB into memory for faster loading-sff|screen_fastafile 'FASTA FILE'Same as 's|screen' above, but uses USearch, rather than SOAPaligner2.-fsoap ['DB1 DB2 ...',s,c,f,r]Filter screened reads, (s)caftigs, (c)ontigs, sca(f)folds or (r)evised assembly scaftigsat higher %ID and length cutoff. This step has to be run before calculating profiles if the option soap was usedAdditional options:-shm   : If set, faster, but saves data for the filtering step in /dev/shm/<USER>-psoap|pbwa ['DB1 DB2 ...',s,c,f,r] -m|mode [gene, NCBI, mOTU, functional] -o [OUTPUT FOLDER]Generate gene, mOTU, NCBI or functional profiles on filtered reads,(s)caftigs, (c)ontigs, sca(f)folds or (r)evised assembly scaftigs. If -mode is set to either NCBI or mOTU, it is expected that the reads have been correctly mapped to the corresponding databases.Specify psoap if you used the command 'soap' previously, and 'pbwa' if you used 'bwa'.Additional options:-no_horizontal : No not calculate horizontal gene & functional coverages-verbose       : Prints extra information about status of profiling steps-shm           : Faster, but saves 2-5 GB of data for the profiling step in /dev/shm/<USER>-uniq          : Specify this flag if you find duplicated row names(e.g. if you have mapped to a DB where the same reference appears multiple times)Available modulesThese are installed in the folder /nfs/data/Downloads/mocat2/stable/2.1.3/modEach module requires a NAME.sh and NAME.cfg file inside the NAME folder-annotate_gene_catalog [leave empty for using sample file generated catalog or enter full path to catalog; use amino acid sequence file]Required options:-blasttype [should be "blastp" normally for amino acid sequences, but can be set to "blastx"]-make_gene_catalog [samples specifed in sample file will be used ot generate catalog]Required options:-assembly_type [asembly or assembly.revised]Statistics Options-sfq|stats_fastqcProduces statistics for each lane with raw reads using the FastQC toolkit-ss|sample_statusPrints a simple view how the processing status of each sample,and stores this in <sample_file>.statusAdditional Options-cfg|config [file]Specify another config file than MOCAT.cfg-x|no_executeOnly create job scripts, but don't execute them-nt|no_tempOverrides any specified temp folders config file-cpus [integer]Not recommended, but specifies a fixed number of cores for each job,please read the full manual using MOCAT.pl -man-host [hostname]Runs the jobs on a different host machine-identity [integer]Overrides any percentage cutoff setting in cfg file-length [integer]Overrides any length cutoff setting in cfg file-memory XGBIf queuing system is SGE or LSF, it will require XGB of RAM for the jobThis can also be set with the respective memory options by adding theseto the param fields in the config file-config A=b C=dOverrides setting A from the config file with b, etc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/223728.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java实现快速排序算法

快速排序算法 &#xff08;1&#xff09;概念&#xff1a;快速排序是指通过一趟排序将要排序的数据分割成独立的两部分&#xff0c;其中一部分的所有数据都比另外一部分的所有数据都要小&#xff0c;然后再按此方法对这两部分数据分别进行快速排序。整个排序过程可以递归进行&…

TSINGSEE青犀城市道路积水AI检测算法视频智能监管解决方案

近年来&#xff0c;由于城市区域内涝频发&#xff0c;遇到强降水天气出现路面严重积水的情况时有发生&#xff0c;影响交通通行甚至引发事故。所以&#xff0c;对下穿隧道、下沉式道路等路面积水情况的监测显得尤为重要。传统的监管方式很难及时发现道路积水情况&#xff0c;那…

物易管预测性维护平台3.6.0版本上线,工况数据处理、设备故障模型、数据可视化等方面带来全新功能体验

物易管设备预测性维护平台V3.6.0版本近日正式发布上线&#xff0c;相较V3.5.0版本次主要新增优化设备工况数据接入、工况数据模型训练、数据可视化以及设备监测详情优化四个板块。新版本在处理工况数据、设备故障模型、数据分析展示以及设备监测方面带来全新的体验。 01设备工况…

Jtti:ssl协议未开启怎么解决?

如果你的服务器上的SSL协议未开启&#xff0c;可以按照以下步骤检查和解决问题。SSL协议通常由Web服务器配置和启用。以下是基于常见的Web服务器的步骤&#xff1a; Apache Web 服务器&#xff1a; 1.检查 Apache 是否加载了 SSL 模块&#xff1a; 在终端中运行以下命令&#x…

基于SSM的高校疫情管理系统设计与实现论文

摘 要 当下疫情不容松懈&#xff0c;此次新冠肺炎疫情是传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件&#xff0c;疫情防控尤为重要&#xff0c;传统的基于纸质文本的疫情信息管理模式&#xff0c;效率低&#xff0c;无法满足管理需求&#xff0c;所以…

若依源码分析

一.登录 1.1 生成验证码 基本思路 后端生成一个表达式,74?11 74?转成图片,传到前端进行展示 将结果11存入redis 前端代码实现: 请求后端地址:http://localhost/dev-api/captchaImage,通过反向代理解决前后端跨域问题,将请求路径变为:http://localhost:8080/captchaImag…

ESXI 6.7升级update3

一、适用场景 1、企业已有专业服务器&#xff0c;通过虚拟化环境搭建了vm server&#xff1b; 2、备份整个vm server时&#xff0c;需要使用ovftool工具完成&#xff0c;直接导出ovf模板时报错&#xff1b; 3、升级EXSI6.7的build 8169922版本为update 3版本后&#xff0c;已保…

The method show() from the type Window is deprecated

java.awt.Window.show() java.awt.Component.setVisible(true); Window.show() java.awt.JFrame java.awt.Frame java.awt.Windows java.awt.Component.setVisible(true);

论文查重过多怎么降重 神码ai

大家好&#xff0c;今天来聊聊论文查重过多怎么降重&#xff0c;希望能给大家提供一点参考。 以下是针对论文重复率高的情况&#xff0c;提供一些修改建议和技巧&#xff0c;可以借助此类工具&#xff1a; 论文查重过多怎么降重 当论文查重率过高时&#xff0c;需要进行降重处…

LeetCode力扣每日一题(Java)66、加一

每日一题在昨天断开了一天&#xff0c;是因为作者沉迷吉他&#xff0c;无法自拔……竟然把每日一题给忘了&#xff0c;所以今天&#xff0c;发两篇每日一题&#xff0c;把昨天的给补上 一、题目 二、解题思路 1、我的思路 其实乍一看这道题还是比较简单的&#xff0c;就是让…

商业智能BI和数据可视化的区别

现在市场上有非常多的商业智能BI产品&#xff0c;几乎都在着重宣传其数据可视化功能的强大&#xff0c;给人造成一种商业智能BI就是数据可视化的印象。事实上商业智能BI并不等于数据可视化。要探究商业智能BI和数据可视化的区别&#xff0c;我们先要分别弄清楚这两个概念。 1、…

gitlab下载,离线安装

目录 1.下载 2.安装 3.配置 4.启动 5.登录 参考&#xff1a; 1.下载 根据服务器操作系统版本&#xff0c;下载对应的RPM包。 gitlab官网&#xff1a; The DevSecOps Platform | GitLab rpm包官网下载地址: gitlab/gitlab-ce - Results in gitlab/gitlab-ce 国内镜像地…

智能优化算法应用:基于狮群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于狮群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于狮群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.狮群算法4.实验参数设定5.算法结果6.参考文献7.MA…

常见的Linux基本指令

目录 什么是Linux&#xff1f; Xshell如何远程控制云服务器 Xshell远程连接云服务器 Linux基本指令 用户管理指令 pwd指令 touch指令 mkdir指令 ls指令 cd指令 rm指令 man命令 cp指令 mv指令 cat指令 head指令 ​编辑 tail指令 ​编辑echo指令 find命令 gr…

记一次挖矿病毒的溯源

ps&#xff1a;因为项目保密的原因部分的截图是自己在本地的环境复现。 1. 起因 客户打电话过来说&#xff0c;公司web服务异常卡顿。起初以为是web服务缓存过多导致&#xff0c;重启几次无果后觉得可能是受到了攻击。起初以为是ddos攻击&#xff0c;然后去查看web服务器管理…

Python调用API的实用技巧

导语&#xff1a;在当今的软件开发世界中&#xff0c;API&#xff08;应用程序接口&#xff09;已成为数据传输和功能调用的重要桥梁。Python作为一种功能强大的编程语言&#xff0c;提供了多种调用API的方法。本文将分享一些实用的Python调用API技巧&#xff0c;帮助你更好地利…

最大子数组和java实现【动态规划基础练习】

12.15 最大子数组和 给你一个整数数组 nums &#xff0c;请你找出一个具有最大和的连续子数组&#xff08;子数组最少包含一个元素&#xff09;&#xff0c;返回其最大和。 子数组 是数组中的一个连续部分。 示例 1&#xff1a; 输入&#xff1a;nums [-2,1,-3,4,-1,2,1,-5,4]…

深入了解空号检测API:提升通信效率的关键

引言 随着通信技术的不断发展&#xff0c;人们对于通信效率的要求也越来越高。在通信过程中&#xff0c;空号检测是一个非常重要的环节&#xff0c;它可以帮助我们避免无效的通信&#xff0c;提高通信效率。而空号检测API则是实现空号检测功能的重要工具。 空号检测API 空号…

git的分支的使用,创建分支,合并分支,删除分支,合并冲突,分支管理策略,bug分支,强制删除分支

GIT | 分支 文章目录 GIT | 分支创建分支合并分支删除分支合并冲突分支管理策略bug分支强制删除分支 创建分支 查看当前本地仓库中有哪些分支 git branchHEAD所指向的分支就是当前正在工作的分支 cat .git/HEAD创建一个分支 git branch dev创建好了&#xff0c;但是目前还是…

数字人克隆系统源码无限克隆数字人!

随着人工智能技术的不断发展&#xff0c;数字人的应用越来越广泛。数字人可以用于虚拟演员、虚拟客服、虚拟主持人等领域&#xff0c;为企业和个人带来更多的商业价值和娱乐体验。然而&#xff0c;数字人的制作过程需要大量的人力和时间&#xff0c;成本较高&#xff0c;限制了…