C# OpenVINO 直接读取百度模型实现印章检测

目录

效果

模型信息

项目

代码

下载

其他


C# OpenVINO 直接读取百度模型实现印章检测

效果

模型信息

Inputs
-------------------------
name:scale_factor
tensor:F32[?, 2]

name:image
tensor:F32[?, 3, 608, 608]

name:im_shape
tensor:F32[?, 2]

---------------------------------------------------------------

Outputs
-------------------------
name:multiclass_nms3_0.tmp_0
tensor:F32[?, 6]

name:multiclass_nms3_0.tmp_2
tensor:I32[?]

---------------------------------------------------------------

项目

代码

using OpenCvSharp;
using Sdcb.OpenVINO;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using System.Text;
using System.Windows.Forms;
 
namespace OpenVINO_Det_物体检测
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }
 
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string model_path;
        Mat src;
        string[] dicts;
 
        StringBuilder sb = new StringBuilder();
 
        float confidence = 0.75f;
 
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            src = new Mat(image_path);
            pictureBox2.Image = null;
        }
 
        unsafe private void button2_Click(object sender, EventArgs e)
        {
            if (pictureBox1.Image == null)
            {
                return;
            }
 
            pictureBox2.Image = null;
            textBox1.Text = "";
            sb.Clear();
 
            src = new Mat(image_path);
            Mat result_image = src.Clone();
 
            model_path = "model/model.pdmodel";
            Model rawModel = OVCore.Shared.ReadModel(model_path);
 
            int inpHeight = 608;
            int inpWidth = 608;
 
            var ad = OVCore.Shared.AvailableDevices;
            Console.WriteLine("可用设备");
            foreach (var item in ad)
            {
                Console.WriteLine(item);
            }
 
            CompiledModel cm = OVCore.Shared.CompileModel(rawModel, "CPU");
            InferRequest ir = cm.CreateInferRequest();
 
            Stopwatch stopwatch = new Stopwatch();
 
            Shape inputShape = new Shape(1, 608, 608);
            Size2f sizeRatio = new Size2f(1f * src.Width / inputShape[2], 1f * src.Height / inputShape[1]);
            Cv2.CvtColor(src, src, ColorConversionCodes.BGR2RGB);
 
            Point2f scaleRate = new Point2f(1f * inpWidth / src.Width, 1f * inpHeight / src.Height);
 
            Cv2.Resize(src, src, new OpenCvSharp.Size(), scaleRate.X, scaleRate.Y);
 
            Common.Normalize(src);
 
            float[] input_tensor_data = Common.ExtractMat(src);
 
            /*
             scale_factor   1,2
             image          1,3,608,608
             im_shape       1,2 
             */
            Tensor input_scale_factor = Tensor.FromArray(new float[] { scaleRate.Y, scaleRate.X }, new Shape(1, 2));
            Tensor input_image = Tensor.FromArray(input_tensor_data, new Shape(1, 3, 608, 608));
            Tensor input_im_shape = Tensor.FromArray(new float[] { 608, 608 }, new Shape(1, 2));
 
            ir.Inputs[0] = input_scale_factor;
            ir.Inputs[1] = input_image;
            ir.Inputs[2] = input_im_shape;
 
            double preprocessTime = stopwatch.Elapsed.TotalMilliseconds;
            stopwatch.Restart();
 
            ir.Run();
 
            double inferTime = stopwatch.Elapsed.TotalMilliseconds;
            stopwatch.Restart();
 
            Tensor output_0 = ir.Outputs[0];
 
            int num = (int)output_0.Shape.Dimensions[0];
 
            float[] output_0_array = output_0.GetData<float>().ToArray();
 
            for (int j = 0; j < num; j++)
            {
                int num12 = (int)Math.Round(output_0_array[j * 6]);
                float score = output_0_array[1 + j * 6];
 
                if (score > this.confidence)
                {
                    int num13 = (int)(output_0_array[2 + j * 6]);
                    int num14 = (int)(output_0_array[3 + j * 6]);
                    int num15 = (int)(output_0_array[4 + j * 6]);
                    int num16 = (int)(output_0_array[5 + j * 6]);
 
                    string ClassName = dicts[num12];
                    Rect r = Rect.FromLTRB(num13, num14, num15, num16);
                    sb.AppendLine($"{ClassName}:{score:P0}");
                    Cv2.PutText(result_image, $"{ClassName}:{score:P0}", new OpenCvSharp.Point(r.TopLeft.X, r.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                    Cv2.Rectangle(result_image, r, Scalar.Red, thickness: 2);
                }
            }
 
            double postprocessTime = stopwatch.Elapsed.TotalMilliseconds;
            stopwatch.Stop();
            double totalTime = preprocessTime + inferTime + postprocessTime;
 
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
 
            sb.AppendLine($"Preprocess: {preprocessTime:F2}ms");
            sb.AppendLine($"Infer: {inferTime:F2}ms");
            sb.AppendLine($"Postprocess: {postprocessTime:F2}ms");
            sb.AppendLine($"Total: {totalTime:F2}ms");
 
            textBox1.Text = sb.ToString();
 
        }
 
        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = Application.StartupPath;
 
            string classer_path = "lable.txt";
            List<string> str = new List<string>();
            StreamReader sr = new StreamReader(classer_path);
            string line;
            while ((line = sr.ReadLine()) != null)
            {
                str.Add(line);
            }
            dicts = str.ToArray();
 
            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
        }
    }
}

using OpenCvSharp;
using Sdcb.OpenVINO;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using System.Text;
using System.Windows.Forms;namespace OpenVINO_Det_物体检测
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string model_path;Mat src;string[] dicts;StringBuilder sb = new StringBuilder();float confidence = 0.75f;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";src = new Mat(image_path);pictureBox2.Image = null;}unsafe private void button2_Click(object sender, EventArgs e){if (pictureBox1.Image == null){return;}pictureBox2.Image = null;textBox1.Text = "";sb.Clear();src = new Mat(image_path);Mat result_image = src.Clone();model_path = "model/model.pdmodel";Model rawModel = OVCore.Shared.ReadModel(model_path);int inpHeight = 608;int inpWidth = 608;var ad = OVCore.Shared.AvailableDevices;Console.WriteLine("可用设备");foreach (var item in ad){Console.WriteLine(item);}CompiledModel cm = OVCore.Shared.CompileModel(rawModel, "CPU");InferRequest ir = cm.CreateInferRequest();Stopwatch stopwatch = new Stopwatch();Shape inputShape = new Shape(1, 608, 608);Size2f sizeRatio = new Size2f(1f * src.Width / inputShape[2], 1f * src.Height / inputShape[1]);Cv2.CvtColor(src, src, ColorConversionCodes.BGR2RGB);Point2f scaleRate = new Point2f(1f * inpWidth / src.Width, 1f * inpHeight / src.Height);Cv2.Resize(src, src, new OpenCvSharp.Size(), scaleRate.X, scaleRate.Y);Common.Normalize(src);float[] input_tensor_data = Common.ExtractMat(src);/*scale_factor   1,2image          1,3,608,608im_shape       1,2 */Tensor input_scale_factor = Tensor.FromArray(new float[] { scaleRate.Y, scaleRate.X }, new Shape(1, 2));Tensor input_image = Tensor.FromArray(input_tensor_data, new Shape(1, 3, 608, 608));Tensor input_im_shape = Tensor.FromArray(new float[] { 608, 608 }, new Shape(1, 2));ir.Inputs[0] = input_scale_factor;ir.Inputs[1] = input_image;ir.Inputs[2] = input_im_shape;double preprocessTime = stopwatch.Elapsed.TotalMilliseconds;stopwatch.Restart();ir.Run();double inferTime = stopwatch.Elapsed.TotalMilliseconds;stopwatch.Restart();Tensor output_0 = ir.Outputs[0];int num = (int)output_0.Shape.Dimensions[0];float[] output_0_array = output_0.GetData<float>().ToArray();for (int j = 0; j < num; j++){int num12 = (int)Math.Round(output_0_array[j * 6]);float score = output_0_array[1 + j * 6];if (score > this.confidence){int num13 = (int)(output_0_array[2 + j * 6]);int num14 = (int)(output_0_array[3 + j * 6]);int num15 = (int)(output_0_array[4 + j * 6]);int num16 = (int)(output_0_array[5 + j * 6]);string ClassName = dicts[num12];Rect r = Rect.FromLTRB(num13, num14, num15, num16);sb.AppendLine($"{ClassName}:{score:P0}");Cv2.PutText(result_image, $"{ClassName}:{score:P0}", new OpenCvSharp.Point(r.TopLeft.X, r.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);Cv2.Rectangle(result_image, r, Scalar.Red, thickness: 2);}}double postprocessTime = stopwatch.Elapsed.TotalMilliseconds;stopwatch.Stop();double totalTime = preprocessTime + inferTime + postprocessTime;pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());sb.AppendLine($"Preprocess: {preprocessTime:F2}ms");sb.AppendLine($"Infer: {inferTime:F2}ms");sb.AppendLine($"Postprocess: {postprocessTime:F2}ms");sb.AppendLine($"Total: {totalTime:F2}ms");textBox1.Text = sb.ToString();}private void Form1_Load(object sender, EventArgs e){startupPath = Application.StartupPath;string classer_path = "lable.txt";List<string> str = new List<string>();StreamReader sr = new StreamReader(classer_path);string line;while ((line = sr.ReadLine()) != null){str.Add(line);}dicts = str.ToArray();image_path = "test_img/1.jpg";pictureBox1.Image = new Bitmap(image_path);}}
}

下载

源码下载

其他

C# PaddleDetection yolo 印章检测-CSDN博客

C# Onnx Yolov8 Detect 印章 指纹捺印 检测-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/222546.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浮动的魅力与挑战:如何在前端设计中巧妙运用浮动(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

Vue3 逻辑复用 - 组合式函数

“组合式函数”(Composables) 是一个利用 Vue 的组合式 API 来封装和复用有状态逻辑的函数。 一个实现实现鼠标跟踪功能 <script setup> import { ref, onMounted, onUnmounted } from vueconst x ref(0) const y ref(0)function update(event) {x.value event.page…

简单的教务系统

#include <stdio.h> #include <string.h> #define N 20 int i,j,n,m,lll0,renshu6; double zcj[N]{0};struct stu{ char num[10]; //学号char name[10]; //姓名char sex; //姓别double score[3]; //3 门课的成绩double sum; //3 门课的总分double aver; //3 门课的…

【docker】docker基本命令

启动类命令 启动docker&#xff1a; systemctl start docker停止Docker&#xff1a; systemctl stop docker重启Docker&#xff1a; systemctl restart docker查看状态&#xff1a; systemctl status docker设置开机自启&#xff1a; systemctl enable docker帮助类命令 …

【XR806开发板试用】+2.鸿蒙内核

非常感谢基于安谋科技STAR-MC1的全志XR806 Wi-FiBLE开源鸿蒙开发板试用活动&#xff01;非常感谢极术社区&#xff01;非常感谢极术小姐姐&#xff01;非常感谢全志在线开发者社区&#xff01;非常感谢通过试用申请&#xff01;非常感谢安谋科技&#xff01; 接上一篇&#xff…

pytorch文本分类(二):引入pytorch处理文本数据

pytorch文本数据处理 目录 pytorch文本数据处理1. Pytorch背景2. 数据分割3. 数据加载Dataset代码分析字典的用途代码修改的目的 Dataloader 4. 练习 原学习任务链接 相关数据链接&#xff1a;https://pan.baidu.com/s/1iwE3LdRv3uAkGGI2fF9BjA?pwdro0v 提取码&#xff1a;ro…

Django和ECharts异步请求示例

前提条件 创建django项目&#xff0c;安装配置过程这里就不讲述了。 后端url http://127.0.0.1:8000/echarts/demo/ view视图函数 from django.http import HttpResponse import jsondef EchartsDemo(request):data {}categories ["衬衫","羊毛衫",&…

Java架构师系统架构高性能维度分析

目录 1 导语2 性能维度概述和定义3 高性能流程4 高性能实现方案-缓存为王5 高性能实现方案-异步为帅、分布式为将6 高性能高并发架构案例分析7 总结想学习架构师构建流程请跳转:Java架构师系统架构设计 1 导语 Java架构师在构建高性能系统架构时,需要关注以下几个关键维度:…

Monkey工具之fastbot-iOS实践

背景 目前移动端App上线后 crash 率比较高&#xff0c; 尤其在iOS端。我们需要一款Monkey工具测试App的稳定性&#xff0c;更早的发现crash问题并修复。 去年移动开发者大会上有参加 fastbot 的分享&#xff0c;所以很自然的就想到Fastbot工具。 Fastbot-iOS安装配置 准备工…

低代码与自动化:加速软件开发的新趋势

低代码与自动化技术正在逐渐改变软件开发的面貌。随着科技的不断发展&#xff0c;传统的编程方式已经不再是唯一的选择。低代码和自动化技术正在为开发者提供更高效、更灵活的开发环境&#xff0c;使得软件开发变得更加简单、快速和高效。 低代码和自动化技术正在逐渐改变软件开…

Linux-----4、关机|重启

# 关机、重启 关机和重启操作只有管理员可以执行&#xff01; # 1、关机命令 shutdown -h now 立刻马上关机 shutdown -h 60 60分钟&#xff08;1个小时&#xff09;后关闭 说明&#xff1a;如果取消在另一终端使用shutdown -c 或者直接ctrlc # 2、重启命令 reboot 重启…

如何控制Elasticsearch搜索的相关性?

控制相关性 纯粹处理结构化数据(例如日期、数字和 字符串枚举)很简单:他们只需要检查一个文档(或 行,在关系数据库中)与查询匹配。 虽然布尔值是/否匹配是全文搜索的重要组成部分,但它们 光靠自己是不够的。相反,我们还需要知道每个的相关性 document 是查询。全文搜索…

杨辉三角形-第11届蓝桥杯选拔赛Python真题精选

[导读]&#xff1a;超平老师的Scratch蓝桥杯真题解读系列在推出之后&#xff0c;受到了广大老师和家长的好评&#xff0c;非常感谢各位的认可和厚爱。作为回馈&#xff0c;超平老师计划推出《Python蓝桥杯真题解析100讲》&#xff0c;这是解读系列的第17讲。 杨辉三角形&#…

模型放置到3D场景中后模型位置与鼠标选中的位置不一致怎么办?

在线工具推荐&#xff1a;3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 1、问题 从事3D建模相关工作的朋友们在工作中经常会遇到以下几种问题&#…

RS485转WiFi工业路由器在冷链物流温度监控中的应用

随着物联网技术的不断发展和应用&#xff0c;冷链物流行业也迎来了新的机遇和挑战。在冷链物流中&#xff0c;对温度监控的要求尤为重要&#xff0c;因为温度是保证货物质量和安全的关键因素之一。而RS485转WiFi工业路由器则成为了实现高效、可靠的温度监控系统的重要组成部分。…

做博客网站需要什么配置的服务器?

​  利用搭建博客网站&#xff0c;来分享生活、知识和经验&#xff0c;是很多个人站长乐意做的事情。但&#xff0c;对于互联网行业的新人来说&#xff0c;或许不知道搭建个人博客网站的配置如何选择&#xff0c;本文针对这一点&#xff0c;从地域、服务器类型、配置参数等方…

SpringBoot整合Lucene实现全文检索【详细步骤】【附源码】

笑小枫的专属目录 1. 项目背景2. 什么是Lucene3. 引入依赖&#xff0c;配置索引3.1 引入Lucene依赖和分词器依赖3.2 表结构和数据准备3.3 创建索引3.4 修改索引3.5删除索引 4. 数据检索4.1 基础搜索4.2 一个关键词&#xff0c;在多个字段里面搜索4.3 搜索结果高亮显示4.4 分页检…

如何在PHP中处理跨域请求?

在 PHP 中处理跨域请求&#xff08;CORS&#xff0c;Cross-Origin Resource Sharing&#xff09;&#xff0c;通常需要在服务器端设置相应的 HTTP 头&#xff0c;以允许来自其他域的请求。以下是一些处理跨域请求的方法&#xff1a; 设置 HTTP 头&#xff1a; 在服务器端&#…

【开源Mongdb驱动】SpringBoot+Mybatis+Mongdb融合使用教程

#【开源Mongdb驱动】SpringBootMybatisMongdb无缝融合使用教程 介绍 本文介绍一款基于JAVA开源的mongodb jdbc驱动为基础的无缝与springbootmybatis融合使用案例 mongodb JDBC 使用案例 https://blog.csdn.net/gongbing798930123/article/details/135002530 《基于开源的JA…

流程图、泳道图的介绍和示例分享,以及自定义元件库的介绍

目录 一. 流程图介绍 二. Processon使用 新建一个流程图 图形的使用 三. 流程图示例 登录界面 门诊业务流程图 住院业务流程图 药房业务流程图 会议OA流程图 四. 泳道图介绍 五. 自定义元件库 5.1 新建一个元件库 5.2 创建元件 5.3 使用自定义元件库 一. 流程图介…