SLAM算法与工程实践——相机篇:传统相机使用(2)

SLAM算法与工程实践系列文章

下面是SLAM算法与工程实践系列文章的总链接,本人发表这个系列的文章链接均收录于此

SLAM算法与工程实践系列文章链接


下面是专栏地址:

SLAM算法与工程实践系列专栏


文章目录

  • SLAM算法与工程实践系列文章
    • SLAM算法与工程实践系列文章链接
    • SLAM算法与工程实践系列专栏
  • 前言
  • SLAM算法与工程实践——相机篇:传统相机使用(2)
    • 相机标定
      • 图像缩放和裁剪后后参数变化
        • 缩放(resize)后参数
        • 裁剪(crop)后参数
    • 立体校正
      • initUndistortRectifyMap()和remap()组合
      • undistort()
      • undistortPoints()
      • 组合比较


前言

这个系列的文章是分享SLAM相关技术算法的学习和工程实践


SLAM算法与工程实践——相机篇:传统相机使用(2)

相机标定

参考:

opencv 标定与畸变矫正

利用MatLab+OpenCV进行相机畸变矫正

要matlab标定数据做双目相机矫正OpenCV C++

Matlab 双目相机标定 opencv应用

【OpenCV】摄像机标定+畸变校正

标定的方式一般来说是通过拍摄多张标定板的图片,标定板上有一些特殊的图案可以让计算机自动查找到这些图案的位置,根据这些位置可以计算出外参和内参,这是一个畸变和投影方程组求解过程,根据相机镜头方程不一样,至少4-8组标记位可以得到唯一解

打开Matlab,控制台输入

% 单目相机
cameraCalibrator % 双目相机
stereoCameraCalibrator

选择左右视图的文件夹,导入图片,我这个标定板一小格为 30 mm

在这里插入图片描述

在这里插入图片描述

其中一组的左图被遮挡了,不能用

在这里插入图片描述

双目标定界面

在这里插入图片描述

畸变参数总共有五个,径向畸变3个( k 1 , k 2 , k 3 k_1,k_2,k_3 k1,k2,k3)和切向畸变2个( p 1 , p 2 p_1,p_2 p1,p2)。

径向畸变
x c o r r e c t e d = x ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) y c o r r e c t e d = y ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) \begin{array}{l}{{x_{\mathrm{corrected}}=x(1+k_{1}r^{2}+k_{2}r^{4}+k_{3}r^{6})}}\\{{y_{\mathrm{corrected}}=y(1+k_{1}r^{2}+k_{2}r^{4}+k_{3}r^{6})}}\end{array} xcorrected=x(1+k1r2+k2r4+k3r6)ycorrected=y(1+k1r2+k2r4+k3r6)
切向畸变:
x c o r r e c t e d = x + [ 2 p 1 x y + p 2 ( r 2 + 2 x 2 ) ] y c o r r e c t e d = y + [ p 1 ( r 2 + 2 y 2 ) + 2 p 2 x y ] \begin{aligned}x_{\mathrm{corrected}}&=x+[2p_{1}xy+p_{2}(r^{2}+2x^{2})]\\y_{\mathrm{corrected}}&=y+[p_{1}(r^{2}+2y^{2})+2p_{2}xy]\end{aligned} xcorrectedycorrected=x+[2p1xy+p2(r2+2x2)]=y+[p1(r2+2y2)+2p2xy]
以及在OpenCV中的畸变系数的排列(这点一定要注意 k 1 , k 2 , p 1 , p 2 , k 3 k_1,k_2,p_1,p_2,k_3 k1k2p1p2k3),千万不要以为 k k k 是连着的。
D i s t o r t i o n c o e f f i c i e n t s = ( k 1 k 2 p 1 p 2 k 3 ) \mathrm{Distortion}_{\mathrm{coefficients}}=(\mathrm{k_{1}}\quad\mathrm{k_{2}}\quad\mathrm{p_{1}}\quad\mathrm{p_{2}}\quad\mathrm{k_{3}}) Distortioncoefficients=(k1k2p1p2k3)

选择畸变参数,calibrate

并且通过实验表明,三个参数的时候由于 k 3 k_3 k3 所对应的非线性较为剧烈。估计的不好,容易产生极大的扭曲,所以我们在 MATLAB 中选择使用两参数,并且选择错切和桶形畸变。

在这里插入图片描述

拖拉红线,删除误差大的图像对,使投影误差小于0.1像素最好。然后导出标定参数。

在这里插入图片描述

我这里标定的误差在0.4,精度要求高时不能用

在这里插入图片描述

重新拍摄,误差为0.08

在这里插入图片描述

精度要求不高的情况下,0.13的误差也可以接受

在这里插入图片描述

可以显示校正后的图像

在这里插入图片描述

注意:

在Matlab中选择畸变参数时,有时需要选3参数的,有时需要选2参数的,例如我这里选3参数的,图像校正后边缘变形了

在这里插入图片描述

选择2参数,校正后就是正常图像

在这里插入图片描述

如果选择两参数的模型,那么 k 3 k_3 k3 的值直接设为0

导出相机参数

在这里插入图片描述

在这里插入图片描述

误差

在这里插入图片描述

相机参数如下所示

在这里插入图片描述

相机外参:

在这里插入图片描述

上图中的 RotationOfCamera2 TranslationOfCamera2 是右相机相对于左的旋转平移矩阵,即R和T

校正畸变后的图像

相机内参:

在这里插入图片描述
在这里插入图片描述

注意:其中畸变系数向量在opencv中的顺序为 k1 k2 d1 d2 k3

opencv中内参的格式为
[ f x 0 c x 0 f y c y 0 0 1 ] \left[\begin{matrix} f_x&0&c_x\\ 0&f_y&c_y\\ 0&0&1 \end{matrix}\right] fx000fy0cxcy1

填入opencv前的中间处理

  1. 相机内参旋转矩阵需要转置后填入

  2. k1,k2,p1,p2,,k3 按照顺序填入畸变系数矩阵 distCoeff

  3. 平移矩阵直接填入

然后将参数写入配置文件中,方便下次读取

图像缩放和裁剪后后参数变化

参考:

图像缩放后相机内参如何变化的

图像Crop和Resize对于相机内参的影响

缩小或放大图像,对应的相机内参如何变化

图像缩放对相机内外参矩阵的影响

缩放Resize与裁剪(Center、Random)Crop对相机内参IntrinsicMatrix的影响

缩放(resize)后参数

内参中的 f x , f y , c x , c y f_x,f_y,c_x,c_y fx,fy,cx,cy 都会相应的变化

如果图像缩小为原来的一半,那么 f x , f y , c x , c y f_x,f_y,c_x,c_y fx,fy,cx,cy 都会缩小一半

外参的 R R R T T T 都不会变化

裁剪(crop)后参数

裁剪后, c x , c y c_x,c_y cx,cy 会相应的变小

在这里插入图片描述

f x , f y f_x,f_y fx,fy 不变

立体校正

参考:

【双目视觉】基于opencv双目校正以及双目测距

OpenCV 不同畸变校正函数的使用说明

立体校正的函数说明如下

void stereoRectify(InputArray cameraMatrix1, InputArray distCoeffs1,InputArray cameraMatrix2,InputArray distCoeffs2, Size imageSize,InputArray R, InputArray T,OutputArray R1, OutputArray R2, OutputArray P1,OutputArray P2, OutputArray Q, int flags=CALIB_ZERO_DISPARITY, double alpha=-1,Size newImageSize=Size(), Rect* validPixROI1=0, Rect* validPixROI2=0 )/*	cameraMatrix1-第一个摄像机的摄像机矩阵,即左相机相机内参矩阵,矩阵第三行格式应该为 0 0 1distCoeffs1-第一个摄像机的畸变向量cameraMatrix2-第一个摄像机的摄像机矩阵,即右相机相机内参矩阵,矩阵第三行格式应该为 0 0 1distCoeffs2-第二个摄像机的畸变向量imageSize-图像大小R- 相机之间的旋转矩阵,这里R的意义是:相机1通过变换R到达相机2的位姿T- 左相机到右相机的平移矩阵R1-输出矩阵,第一个摄像机的校正变换矩阵(旋转变换)R2-输出矩阵,第二个摄像机的校正变换矩阵(旋转矩阵)P1-输出矩阵,第一个摄像机在新坐标系下的投影矩阵P2-输出矩阵,第二个摄像机在想坐标系下的投影矩阵Q-4*4的深度差异映射矩阵flags-可选的标志有两种:零或者CV_CALIB_ZERO_DISPARITY ,如果设置 CV_CALIB_ZERO_DISPARITY 的话,
该函数会让两幅校正后的图像的主点有相同的像素坐标。否则该函数会水平或垂直的移动图像,以使得其有用的范围最大alpha-拉伸参数。如果设置为负或忽略,将不进行拉伸。如果设置为0,那么校正后图像只有有效的部分会被显示(没有黑色的部分),
如果设置为1,那么就会显示整个图像。设置为0-1之间的某个值,其效果也居于两者之间。newImageSize-校正后的图像分辨率,默认为原分辨率大小。validPixROI1-可选的输出参数,Rect型数据。其内部的所有像素都有效validPixROI2-可选的输出参数,Rect型数据。其内部的所有像素都有效

initUndistortRectifyMap()和remap()组合

通过映射的方式逐个找出理想点在有畸变原图的位置。initUndistortRectifyMap()用于产生映射表,remap()用于执行映射。

适用场景:

当要进行多次畸变校正时,使用initUndistortRectifyMap() remap()组合比较有效率,只需要执行一次initUndistortRectifyMap(),后面畸变校正只需要执行remap()即可

用法如下

    //计算校正映射矩阵Mat map11, map12, map21, map22;initUndistortRectifyMap(cameraMatrixL, distCoeffsL, R1, P1, imageSize, CV_16SC2, map11, map12);initUndistortRectifyMap(cameraMatrixR, distCoeffsR, R2, P2, imageSize, CV_16SC2, map21, map22);for (int i = 0; i < imgLs.size(); i++){//进行校正映射Mat img1r, img2r;imgLs[i];remap(imgLs[i], img1r, map11, map12, INTER_LINEAR);remap(imgRs[i], img2r, map21, map22, INTER_LINEAR);imwrite("./imgdata/imgleftRec" + to_string(i) + ".png", img1r);imwrite("./imgdata/imgrightRec" + to_string(i) + ".png", img2r);//拼接图像Mat result;hconcat(img1r, img2r, result);imshow("校正后结果" + to_string(i), result);}

undistort()

本质是initUndistortRectifyMap() remap()组合,写在了一个函数里。方便只校正一次。

适用场景:
当只需要执行一次畸变校正时,用undistort()比用组合形式更方便一些。

undistortPoints()

适用场景:
当只需要找出有畸变原图中的少数几个点经过畸变校正后的理想位置时,使用undistortPoints()可达到目的。

组合比较

initUndistortRectifyMap() remap()组合和undistort()结果是一模一样的

initUndistortRectifyMap() remap()组合和undistortPoints()对特征点的校正结果大体一致,在亚像素级别有略微差别

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/222066.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++共享和保护——(3)静态成员

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 信念&#xff0c;你拿它没办法&#x…

Java 第8章 本章作业

目录 4.通过继承实现员工工资核算打印功能 6.父类和子类中通过this和super都可以调用哪些属性和方法 8.扩展如下的BankAccount类 10.判断测试类中创建的两个对象是否相等 11.向上转型&向下转型 12.equals和的区别 15.什么是多态,多态具体体现有哪些? 16. java的动…

Spring Bean基础

写在最前面: 本文运行的示例在我github项目中的spring-bean模块&#xff0c;源码位置: spring-bean 前言 为什么要先掌握 Spring Bean 的基础知识&#xff1f; 我们知道 Spring 框架提供的一个最重要也是最核心的能力就是管理 Bean 实例。以下是其原因&#xff1a; 核心组件…

新版Spring Security6.2案例 - Authentication用户名密码

前言&#xff1a; 前面有翻译了新版Spring Security6.2架构&#xff0c;包括总体架构&#xff0c;Authentication和Authorization&#xff0c;感兴趣可以直接点链接&#xff0c;这篇翻译官网给出的关于Authentication的Username/Password这页。 首先呢&#xff0c;官网就直接…

前端如何使用express写一个简单的服务

相信不少前端平常在日常工作中肯遇见过后端API接口没开发出来的时候吧 前端提升小技巧 自己使用nodejs——express ,koa&#xff0c;egg开发接口吧(本人比较喜欢egg和express) 今天先分享一下express 下面是一个简单的demo 1、首先咱们可以新建一个文件夹,创建一个app.js 下…

【开源软件】最好的开源软件-2023-第18名 OpenTelemetry

自我介绍 做一个简单介绍&#xff0c;酒架年近48 &#xff0c;有20多年IT工作经历&#xff0c;目前在一家500强做企业架构&#xff0e;因为工作需要&#xff0c;另外也因为兴趣涉猎比较广&#xff0c;为了自己学习建立了三个博客&#xff0c;分别是【全球IT瞭望】&#xff0c;【…

Keepalived+Nginx实现高可用(下)

一、背景 上篇文章介绍了基本的Keepalived的简单入门&#xff0c;但是针对预留的问题还有优化的空间。分别是下面3个问题: 1、如果仅仅只提供一个VIP的方式&#xff0c;会存在只有1台服务器处于实际工作&#xff0c;另外1台处于闲置状态。 势必存在成本资源浪费问题&#xff0c…

LLM之RAG实战(四):Self-RAG如何革命工业LLM

论文地址&#xff1a;https://arxiv.org/pdf/2310.11511.pdf Github地址&#xff1a;https://github.com/AkariAsai/self-rag 尽管LLM&#xff08;大型语言模型&#xff09;的模型和数据规模不断增加&#xff0c;但它们仍然面临事实错误的问题。现有的Retrieval-Augmented Gen…

一文讲清 QWidget 大小位置

一文讲清 QWidget 大小位置 前言 ​ QWidget 的位置基于桌面坐标系&#xff0c;以左上角为原点&#xff0c;向右x轴增加&#xff0c;向下y轴增加。 一、图解 ​ ​ 如上图所示&#xff0c;当窗口为顶层窗口时&#xff08;即没有任何父窗口&#xff09;&#xff0c;系统会自…

JVM的五大分区

1.方法区 方法区主要用来存储已在虚拟机加载的类的信息、常量、静态变量以及即时编译器编译后的代码信息。该区域是被线程共享的。 2.虚拟机栈 虚拟机栈也就是我们平时说的栈内存&#xff0c;它是为java方法服务的。每个方法在执行的 时候都会创建一个栈帧&#xff0c;用于存…

数据结构学习 12字母迷宫

dfs 回溯 剪枝 这个题和dfs有关&#xff0c;但是我之前没有接触过&#xff0c;我看了这一篇很好的文章&#xff0c;看完之后写的答案。 我觉得很好的总结&#xff1a; dfs模板 int check(参数) {if(满足条件)return 1;return 0; }void dfs(int step) {判断边界{相应操作}尝试…

【JUC】二十九、synchronized锁升级之轻量锁与重量锁

文章目录 1、轻量锁2、轻量锁的作用3、轻量锁的加锁和释放4、轻量级锁的代码演示5、重量级锁6、重量级锁的原理7、锁升级和hashcode的关系8、锁升级和hashcode关系的代码证明9、synchronized锁升级的总结10、JIT编译器对锁的优化&#xff1a;锁消除和锁粗化11、结语 &#x1f4…

基士得耶速印机印件故障解决方法和印刷机使用注意事项

基士得耶和理光两个品牌的一体化速印机同属于理光公司的两个不同品牌。基士得耶速印机的每个机型&#xff0c;都有和它通用的理光速印机的机型相对应。&#xff08;油墨版纸通用&#xff0c;外观一样&#xff0c;配件全部通用。&#xff09;速印机在印刷的时候&#xff0c;经常…

USB2.0 Spec 中文篇

体系简介 线缆 USB 是一种支持热拔插的高速串行传输总线&#xff0c;使用一对&#xff08;两根&#xff09;差分信号来传输数据&#xff0c;半双工。要求使用屏蔽双绞线。 供电 USB 支持 “总线供电” 和 “自供电” 两种供电模式。在总线供电方式下&#xff0c;设备最多可…

Tofu目标识别跟踪模块

Tofu3 是多波段视频物体识别跟踪模块&#xff0c;支持可见光视频与红外视频的输入&#xff0c;支持激光补光变焦自适应控制&#xff0c;支持视频下的多类型物体检测、识别、跟踪等功能。 产品支持视频编码、设备管理、目标检测、深度学习识别、跟踪等功能&#xff0c;提供多机…

智慧灯杆技术应用分析

智慧灯杆是指在传统灯杆的基础上&#xff0c;通过集成多种先进技术实现城市智能化管理的灯杆。智慧灯杆技术应用的分析如下&#xff1a; 照明功能&#xff1a;智慧灯杆可以实现智能调光、时段控制等功能&#xff0c;根据不同的需求自动调节照明亮度&#xff0c;提高照明效果&am…

利用Pytorch预训练模型进行图像分类

Use Pre-trained models for Image Classification. # This post is rectified on the base of https://learnopencv.com/pytorch-for-beginners-image-classification-using-pre-trained-models/# And we have re-orginaized the code script.预训练模型(Pre-trained models)…

大型科技公司与初创公司:选择哪一个?

你有没有想过&#xff0c;特别是在你职业生涯的开始&#xff0c;选择什么类型的公司&#xff1f;它应该是一家像谷歌、亚马逊、Meta 这样的大型科技公司&#xff0c;还是为一家小型初创公司工作。在本文中&#xff0c;我们将讨论实际差异是什么&#xff0c;并帮助你选择最适合你…

『OPEN3D』1.8.3 多份点云配准

多份点云配准是将多份点云数据在全局空间中对齐的过程。通常,输入是一组数据(例如点云或RGBD图像){Pi}。输出是一组刚性变换{Ti},使得经过变换的点云在全局空间中对齐。 NNNNNathan 本专栏地址: https://blog.csdn.net/qq_41366026/category_12186023.html 此处是…

DHCP—动态主机配置协议

动态主机配置协议DHCP&#xff08;Dynamic Host Configuration Protocol&#xff0c;动态主机配置协议&#xff09;是RFC 1541&#xff08;已被RFC 2131取代&#xff09;定义的标准协议&#xff0c;该协议允许服务器向客户端动态分配IP地址和配置信息。 DHCP协议支持C/S&#x…