自动机器学习是什么?概念及应用

自动机器学习 (Auto Machine Learning) 的应用和方法

随着众多企业在大量场景中开始采用机器学习,前后期处理和优化的数据量及规模指数级增长。企业很难雇用充足的人手来完成与高级机器学习模型相关的所有工作,因此机器学习自动化工具是未来人工智能 (AI) 的关键组成部分,自动机器学习 (Automated Machine Learning,AutoML) 应运而生。AutoML 是AIOps多层技术平台中一款快速增长的工具。 自动机器学习是一种将人工智能 (Artificial Intelligence) 应用于问题的端到端周期自动化方法。一般情况下,数据科学家会负责构建机器学习 (ML) 模型,以及随后的数据预处理、特征工程、模型选择、超参数优化和模型后处理等复杂任务。AutoML 框架可以自动完成这些任务(或至少部分任务),让不具备数据科学专业知识的人也可以成功构建 ML 模型。 对那些因资源有限而无法全面投入使用 AI 的公司来说,自动化 ML 流程带来了机会。尽管实现机器学习流程全自动化依然任重而道远,但很多企业都开始在构建着眼于未来的工具,以进一步推动自动机器学习的发展。  

为什么要使用自动机器学习工具?

研究当前的机器学习模型构建过程,我们发现,模型构建的代价高昂,不仅需要高水平的技术专家,还需要投入大量的时间、资金,反复地进行研发工作。以下为推动自动机器学习发展的四个因素:

缩小技能差距

由于企业很难招募到兼具领域知识和技能的人才来构建模型,导致缺乏开发 AI 和 ML 相关的专业技术,阻碍了机器学习的进一步发展。借助自动机器学习,非专业人才也可以参与构建AI。企业不仅无需招聘大量高专业化人才,还能提高创新速度,最终实现人工智能的规模化应用。

缩短面市时间

在一些快速发展的领域,缩短上市时间就能取得巨大的竞争优势。而机器学习流程自动化恰好能够减少构建模型所需的时间。对于从未部署过 AI 的公司来说,自动机器学习不仅能够降低其进入该领域的门槛,还可以提供成功的解决方案。

降低成本

从零开始构建机器学习模型,需要耗费大量的时和资金。数据科学家及其他机器学习领域的专家,他们的薪资相对较高。从零开始构建模型,费时又费力,相比之下,自动机器学习工具则具有较高的性价比。

构建更佳模型

自动机器学习在模型和超参数方面的迭代速度比手工操作更快。在规定时间段内,迭代越多,所构建的模型性能就越高。自动机器学习既提高了决策效率,又加快了模型研究的速度。 此外,数据科学家也在努力探索适用于深度神经网络的高性能架构。自动机器学习可以自动搜索和评估架构(即神经架构搜索),从而加速开发人工智能模型解决方案。  

自动机器学习的方法

对于机器学习的自动化,有不同的定义。如今,流传比较广泛的是一个对自动机器学习进行分级的体系(类似于自动驾驶汽车的分级):

  • 初级:无自动化,数据科学家从零开始编写算法。
  • 级:使用一些高级API。
  • 级:自动调整超参数和选择模型。
  • 级:自动特征工程、特征选择和数据增强。
  • 级:自动领域和特定问题的特征工程、数据扩充和数据整合。
  • 级:完全自动化,无需输入或指导来解决机器学习问题。

虽然目前市场上有很多不错的 3 级自动机器学习解决方案,但不同公司在实际实施中又降为了 1 级或 2 级。在这些不同等级的自动化过程中,有几个自动机器学习方法值得讨论:

模型选择和集成

自动机器学习可以通过输入相同数据来训练不同算法,从而实现迭代,选择性能最佳的模型。自动机器学习还可以借助混合和叠加等技术来与多个模型集成,以获取更好的结果。

超参数优化 (HPO)

所有机器学习算法都有参数,或者模型中每个变量或特征的权重。参数来自于训练过程,而超参数则是一个用于控制学习过程的可调值。超参数优化 (HPO) 是指通过调整超参数来提高模型性能。自动机器学习工具可以自动评估各种超参数,以确定可以产生最高性能的模型集合。

特征工程

在自动机器学习中,特征工程不如模型选择和 HPO 那么常见,但由于其能够提高模型的预测性,因此越来越受重视。特征工程是指从现有输入中构建新的输入特征(或解释变量)。特征工程强调了模型预测时需要了解的相关元素,因而会影响模型性能。所以,数据科学家必须一次次地手动添加特征,但有了自动机器学习工具,这项工作可以自动完成。这些工具从给定的输入中提取相关和有意义的特征,并测试不同的特征组合,以生成性能最高的模型。  

自动机器学习的前景

在达到 5 级,即完全自动化的解决方案之前,自动机器学习行业仍有漫长的道路。尽管如此,很多企业还是投资了较低级别的自动机器学习。一般来说,这些企业将精力主要放在了模型选择和 HPO上。特征工程的进一步发展或将推动自动机器学习领域在新创新阶段取得突破。 随着自动化需求增长和工具改进,构建机器学习的难度和资源密集度将会降低,机器学习的应用范围也将更加广泛。  

澳鹏数据科学家 Shambhavi Srivastava 对自动机器学习的看法

在澳鹏,我们团队致力于构建机器学习模型。我与数据科学家、机器学习工程师以及 DevOps 的同事协作,致力于建立、整合最先进的 (SOTA) 模型。 构建机器学习模型均包括以下多个步骤:

  1. 从业务角度理解问题
  2. 数据准备(收集、清理、分析)
  3. 构建模型
  4. 评估性能
  5. 将模型容器化并部署到生产中
  6. 观察模型在客户端数据生成上的性能。

上述每个步骤对于项目的成功都至关重要。数据科学家可以通过 自动机器学习来提高成功率。通过自动化工作流程和大幅提升各种整体假设和单个模型属性的测试速度,自动机器学习提高了数据科学家的工作质量。 数据科学家的日常工作是,决定并实施对给定业务用例最有效的机器学习算法。然而,这项任务很繁琐,而且容易出现人为错误和偏见。自动机器学习可以自动化和简化这一过程,使团队能够通过持续评估性能来运行各种机器学习模型,直到满足最佳参数为止。这些自动机器学习功能可以加速机器学习模型的生产,并通过推出准确度更高的模型来提高项目的投资回报率 (ROI)。 模型选择中最具挑战性的环节就是探寻未知。这是科学家将自动机器学习视为头号难题的原因所在。自动机器学习通过减少代码和自动调整超参数,来降低 ML 任务的难度。自动机器学习的核心创新是超参数搜索和寻找最佳匹配。  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/220936.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ICC2:low power与pg strategy(pg_macro_conn_pattern)

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 创建hard macro上的stripe,参考示例: set pd_list{{DEFAULT_VA VDD_DIG VDD_DIG VSS} {PD_DSP VDD_DIG VDD_DSP VSS} } ;#两个电源域,DEFAULT_VA和PD_DSP是对应voltage area名字,其中DEFAULT_…

机器学习可重复性危机下,创建复杂数据系统的挑战

文章目录 一、前言二、主要内容三、总结 🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 一、前言 数据科学系统已成为众多研究领域的关键性工具,其开发者群体呈现出多元化的背景特征。在过去十年中,尽管数据科学与机器学习的强…

Android hwcomposer服务启动流程

Android hwcomposer服务启动流程 客户端 binder远程调用 服务端 surfaceflinger --binder--> hwcomposer .hal文件编译时生成支持binder进程间远程调用通信的cpp文件 在out/soong/.intermediates/hardware/interfaces/graphics/composer/2.1/ 目录下找…

测试用例设计方法:功能图

1 引言 前面几篇文章为我们讲述了因果图、判定表、正交试验等几种方法,主要是针对于不同条件输入输出的组合进行测试,但在实际需求中,我们也常会遇到需要对被测对象的状态流转进行验证的情况,此时前面几种方法将不再适用&#xf…

Windows本地的RabbitMQ服务怎么在Docker for Windows的容器中使用

1. 进入管理界面 windows安装过程请访问:Windows安装RabbitMQ、添加PHP的AMQP扩展 浏览器访问:http://127.0.0.1:15672/ 2. 创建虚拟主机 上面访问的是 RabbitMQ 的管理界面,可以在这个界面上进行一些操作,比如创建虚拟主机、…

CSS彩色发光液体玻璃

效果展示 CSS 知识点 animation 综合运用animation-delay 综合运用filter 的 hue-rotate 属性运用 页面整体布局 <section><div class"glass" style"--i: 1"><div class"inner"><div class"liquid"></d…

LeetCode---374周赛

题目列表 2951. 找出峰值 2952. 需要添加的硬币的最小数量 2953. 统计完全子字符串 2954. 统计感冒序列的数目 一、找到峰值 这个简单的模拟&#xff0c;代码如下 class Solution { public:vector<int> findPeaks(vector<int>& mountain) {int nmountain…

Springboot整合阿里云短信服务

目录 1.注册登录用户 2.点击AccessKey管理&#xff0c;开通使用子用户AccessKey 2.1点击进入AccessKey管理 2.2点击用户创建用户 2.3选择控制台创建 2.4权限修改 3.短信服务 4.创建Springboot项目使用SDK 4.1创建一个springboot项目 4.2导入阿里云短信Maven依赖 4.3…

N体问题-MATLAB 中的数值模拟

一、说明 万有引力是宇宙普适真理&#xff0c;当计算两个物体的引力、质量、距离的关系是经典万有引力物理定律&#xff0c;然而面向复杂问题&#xff0c;比如出现三个以上物体的相互作用&#xff0c;随时间的运动力学&#xff0c;这种数学模型将是更高级的思维方法。本文将阐述…

gin使用自签名SSL证书与自签名证书不受信任方法解决

文章目录 1. X.509 V3证书介绍2、使用openssl生成自签名证书和解决不受信任问题2.1、生成根证书2.2、为域名生成证书申请文件2.3、为域名创建证书的扩展描述文件2.4、为域名创建证书 3、Go应用中使用自签名证书3.1、gin框架调用实现3.2、运行效果 4、使用java的bouncycastle生成…

比较好的python书籍,python有什么书推荐

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;比较好的python书籍&#xff0c;python有什么书推荐&#xff0c;现在让我们一起来看看吧&#xff01; 我是在半年前接触到Python的&#xff0c;我之前没有一点编程基础&#xff0c;但在我自学的这半年里&#xff0c;我发…

Saas 中 用默认的值,不初始化给商户值,sql 查询 group by中,指定字段 倒序

在saas 项目中&#xff0c;有些商户没有设定某些值&#xff0c;则用系统默认的值&#xff0c;不需要初始化给商户 SELECT * FROM app_public_config WHERE (name, merchant_id) IN (SELECT name, MAX(merchant_id)FROM app_public_configGROUP BY name ) and merchant_id IN …

vue3 后台返回的接口数据,下载图片到本地

vue3 后台返回的接口数据&#xff0c;下载图片到本地 <el-table><el-table-column align"left" label"操作" min-width"240"><template #default"scope"><el-button icon"edit" type"primary&quo…

我的NPI项目之Android 安全系列 -- Android Strongbox 初识

从Android9(Pie)开始,Google强烈建议支持Strongbox. 具体描述如下: 一直到目前的Android14. 对应的内容也一并贴出来: 说人话就是Android开始通过独立于主SoC的单元进行密钥存储了。 通常&#xff0c;这样的单元就是我们通常称作的Secure Element&#xff08;SE&#xff09;&am…

高效备份与大数据分析:揭秘亚马逊云科技海外服务器强大能力

首先&#xff0c;让我们先来了解一下云计算的基本概念。云计算是一种基于互联网的计算模式&#xff0c;通过将计算资源、存储空间和应用程序提供给用户&#xff0c;实现按需使用和付费的方式。依托于众多出彩的海外服务器产品我们可以获得这一体验。云计算能够极大地简化用户的…

OpenCV-Python:DevCloud CodeLab介绍及学习

1.Opencv-Python演示环境 windows10 X64 企业版系统python 3.6.5 X64OpenCV-Python 3.4.2.16本地PyCharm IDE线上注册intel账号&#xff0c;使用DevCloud CodeLab 平台 2.DevCloud CodeLab是什么&#xff1f; DevCloud是一个基于云端的开发平台&#xff0c;提供了强大的计算…

UE5 C++(二)— 游戏架构介绍

架构关系如下&#xff1a; 这里只简单描述下&#xff0c;具体的查看官方文档 AGameMode: AGameMode 是 AGameModeBase 的子类&#xff0c;拥有一些额外的功能支持多人游戏和旧行为。 所有新建项目默认使用 AGameModeBase。 如果需要此额外行为&#xff0c;可切换到从 AGameM…

二、Java基础语法

day02 - Java基础语法 1. 注释 ​ 注释是对代码的解释和说明文字。 Java中的注释分为三种&#xff1a; 单行注释&#xff1a; // 这是单行注释文字多行注释&#xff1a; /* 这是多行注释文字 这是多行注释文字 这是多行注释文字 */ 注意&#xff1a;多行注释不能嵌套使用…

docker-harbor 私有仓库

docker 镜像 容器 仓库 仓库&#xff1a;保存镜像 私有&#xff0c;自定义用户的形式登录仓库&#xff0c;拉取或者上传镜像。&#xff08;内部隔离的用户&#xff09; harbor&#xff1a;是VMware公司开发的&#xff0c;开源的企业级的docker registry项目。 帮助用户快速…

【刷题笔记】N皇后||回溯||符合思维方式

N皇后II 1 题目详情 n 皇后问题 研究的是如何将 n 个皇后放置在 n n 的棋盘上&#xff0c;并且使皇后彼此之间不能相互攻击。 给你一个整数 n &#xff0c;返回 n 皇后问题 不同的解决方案的数量。 https://leetcode.cn/problems/n-queens-ii/ 2 分析 刚一开始的时候我认…