pytorch一致数据增强

分割任务对 image 做(某些)transform 时,要对 label(segmentation mask)也做对应的 transform,如 Resize、RandomRotation 等。如果对 image、label 分别用 transform 处理一遍,则涉及随机操作的可能不一致,如 RandomRotation 将 image 转了 a 度、却将 label 转了 b 度。

MONAI 有个 ArrayDataset 实现了这功能,思路是每次 transform 前都重置一次 random seed 先。对 monai 订制 transform 的方法不熟,torchvision.transforms 的订制接口比较简单,考虑基于 pytorch 实现。要改两个东西:

  • 扩展 torchvison.transforms.Compose,使之支持多个输入(image、label);
  • 一个 wrapper,扩展 transform,使之支持多输入。

思路也是重置 random seed,参考 [1-4]。

Code

  • to_multi:将处理单幅图的 transform 扩展成可处理多幅;
  • MultiCompose:扩展 torchvision.transforms.Compose,可输入多幅图。内部调用 to_multi 扩展传入的 transforms。
import random, os
import numpy as np
import torchdef seed_everything(seed=42):random.seed(seed)os.environ['PYTHONHASHSEED'] = str(seed)np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = Truedef to_multi(trfm):"""wrap a transform to extend to multiple input with synchronised random seedInput:trfm: transformation function/object (custom or from torchvision.transforms)Output:_multi_transform: function"""# numpy.random.seed range error:#   ValueError: Seed must be between 0 and 2**32 - 1min_seed = 0 # - 0x8000_0000_0000_0000max_seed = min(2**32 - 1, 0xffff_ffff_ffff_ffff)def _multi_transform(*images):"""images: [C, H, W]"""if len(images) == 1:return trfm(images[0])_seed = random.randint(min_seed, max_seed)res = []for img in images:seed_everything(_seed)res.append(trfm(img))return tuple(res)return _multi_transformclass MultiCompose:"""Extension of torchvision.transforms.Compose that accepts multiple input.Usage is the same as torchvision.transforms.Compose. This class will wrap inputtransforms with `to_multi` to support simultaneous multiple transformation.This can be useful when simultaneously transforming images & segmentation masks."""def __init__(self, transforms):"""transforms should be wrapped by `to_multi`"""self.transforms = [to_multi(t) for t in transforms]def __call__(self, *images):for t in self.transforms:images = t(*images)return images

test

测试一致性,用到预处理过的 verse’19 数据集、一些工具函数、一个订制 transform:

  • verse’19 数据集及预处理见 iTomxy/data/verse;
  • digit_sort_key:数据文件排序用;
  • get_palettecolor_segblend_seg:可视化用;
  • MyDataset:看其中 __getitem__ 的 transform 用法,即同时传入 image 和 label;
  • ResizeZoomPad:一个订制的 transform;
import os, os.path as osp, random
from glob import glob
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional as Fdef digit_sort_key(s, num_pattern=re.compile('([0-9]+)')):"""natural sort,数据排序用"""return [int(text) for text in num_pattern.split(s) if text.isdigit()]def get_palette(n_classes, pil_format=True):"""创建调色盘,可视化用"""n = n_classespalette = [0] * (n * 3)for j in range(0, n):lab = jpalette[j * 3 + 0] = 0palette[j * 3 + 1] = 0palette[j * 3 + 2] = 0i = 0while lab:palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))i += 1lab >>= 3if pil_format:return paletteres = []for i in range(0, len(palette), 3):res.append(tuple(palette[i: i+3]))return resdef color_seg(label, n_classes=0):"""segmentation mask 上色,可视化用"""if n_classes < 1:n_classes = math.ceil(np.max(label)) + 1label_rgb = Image.fromarray(label.astype(np.int32)).convert("L")label_rgb.putpalette(get_palette(n_classes))return label_rgb.convert("RGB")def blend_seg(image, label, n_classes=0, alpha=0.7, rescale=False, transparent_bg=True, save_file=""):"""融合 image 和其 segmentation mask,可视化用"""if rescale:denom = image.max() - image.min()if 0 != denom:image = (image - image.min()) / denom * 255image = np.clip(image, 0, 255).astype(np.uint8)img_pil = Image.fromarray(image).convert("RGB")lab_pil = color_seg(label, n_classes)blended_image = Image.blend(img_pil, lab_pil, alpha)if transparent_bg:blended_image = Image.fromarray(np.where((0 == label)[:, :, np.newaxis],np.asarray(img_pil),np.asarray(blended_image)))if save_file:blended_image.save(save_file)return blended_imageclass MyDataset(torch.utils.data.Dataset):"""订制 dataset,看 __getitem__ 处 transform 的调法"""def __init__(self, image_list, label_list, transform=None):assert len(image_list) == len(label_list)self.image_list = image_listself.label_list = label_listself.transform = transformdef __len__(self):return len(self.image_list)def __getitem__(self, index):img = np.load(self.image_list[index]) # [h, w]lab = np.load(self.label_list[index])img = torch.from_numpy(img).unsqueeze(0).float() # -> [c=1, h, w]lab = torch.from_numpy(lab).unsqueeze(0).int()if self.transform is not None:img, lab = self.transform(img, lab) # 同时传入 image、labelreturn img, labclass ResizeZoomPad:"""订制 resize"""def __init__(self, size, interpolation="bilinear"):if isinstance(size, int):assert size > 0self.size = [size, size]elif isinstance(size, (tuple, list)):assert len(size) == 2 and size[0] > 0 and size[1] > 0self.size = sizeif isinstance(interpolation, str):assert interpolation.lower() in {"nearest", "bilinear", "bicubic", "box", "hamming", "lanczos"}interpolation = {"nearest": F.InterpolationMode.NEAREST,"bilinear": F.InterpolationMode.BILINEAR,"bicubic": F.InterpolationMode.BICUBIC,"box": F.InterpolationMode.BOX,"hamming": F.InterpolationMode.HAMMING,"lanczos": F.InterpolationMode.LANCZOS}[interpolation.lower()]self.interpolation = interpolationdef __call__(self, image):"""image: [C, H, W]"""scale_h, scale_w = float(self.size[0]) / image.size(1), float(self.size[1]) / image.size(2)scale = min(scale_h, scale_w)tmp_size = [ # clipping to ensure sizemin(int(image.size(1) * scale), self.size[0]),min(int(image.size(2) * scale), self.size[1])]image = F.resize(image, tmp_size, self.interpolation)assert image.size(1) <= self.size[0] and image.size(2) <= self.size[1]pad_h, pad_w = self.size[0] - image.size(1), self.size[1] - image.size(2)if pad_h > 0 or pad_w > 0:pad_left, pad_right = pad_w // 2, (pad_w + 1) // 2pad_top, pad_bottom = pad_h // 2, (pad_h + 1) // 2image = F.pad(image, (pad_left, pad_top, pad_right, pad_bottom))return image# 读数据文件
data_path = os.path.expanduser("~/data/verse/processed-verse19-npy-horizontal")
train_images, train_labels, val_images, val_labels = [], [], [], []
for d in os.listdir(osp.join(data_path, "training")):if d.endswith("_ct"):img_p = osp.join(data_path, "training", d)lab_p = osp.join(data_path, "training", d[:-3]+"_seg-vert_msk")assert osp.isdir(lab_p)train_labels.extend(glob(os.path.join(lab_p, "*.npy")))train_images.extend(glob(os.path.join(img_p, "*.npy")))
for d in os.listdir(osp.join(data_path, "validation")):if d.endswith("_ct"):img_p = osp.join(data_path, "validation", d)lab_p = osp.join(data_path, "validation", d[:-3]+"_seg-vert_msk")assert osp.isdir(lab_p)val_labels.extend(glob(os.path.join(lab_p, "*.npy")))val_images.extend(glob(os.path.join(img_p, "*.npy")))# 数据文件名排序
train_images = sorted(train_images, key=lambda f: digit_sort_key(os.path.basename(f)))
train_labels = sorted(train_labels, key=lambda f: digit_sort_key(os.path.basename(f)))
val_images = sorted(val_images, key=lambda f: digit_sort_key(os.path.basename(f)))
val_labels = sorted(val_labels, key=lambda f: digit_sort_key(os.path.basename(f)))# transform
# 用 MultiCompose,其内部调用 to_multi 将 transforms wrap 成支持多输入的
train_trans = MultiCompose([ResizeZoomPad((224, 256)),transforms.RandomRotation(30),
])# 测试:读数据,可试化 image 和 label
check_ds = MyDataset(train_images, train_labels, train_trans)
check_loader = torch.utils.data.DataLoader(check_ds, batch_size=10, shuffle=True)
for images, labels in check_loader:print(images.size(), labels.size())for i in range(images.size(0)):# print(i, end='\r')img = images[i][0].numpy()lab = labels[i][0].numpy()print(np.unique(lab))seg_img = blend_seg(img, lab)img = (255 * (img - img.min()) / (img.max() - img.min())).astype(np.uint8)img = np.asarray(Image.fromarray(img).convert("RGB"))lab = np.asarray(color_seg(lab))comb = np.concatenate([img, lab, seg_img], axis=1)Image.fromarray(comb).save(f"test-dataset-{i}.png")break

效果:
test-dataset-7.png
可见,image 和 label 转了同一个随机角度。

Limits

有些 augmentations 是只对 image 做而不对 label 做的,如 ColorJitter,这里没有考虑怎么处理。

References

  1. How to Set Random Seeds in PyTorch and Tensorflow
  2. ihoromi4/seed_everything.py
  3. Reproducibility
  4. What is the max seed you can set up?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/220897.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络网络层(期末、考研)

计算机网络总复习链接&#x1f517; 目录 路由算法静态路由与动态路由距离-向量算法链路状态路由算法层次路由 IPv4&#xff08;这个必考&#xff09;IPv4分组IPv4地址与NAT子网划分与子网掩码、CIDRARP、DHCP与ICMP地址解析协议ARP动态主机配置协议DHCP IPv6IPv6特点 路由协议…

android studio 创建按钮项目

1&#xff09;、新建一个empty activity项目&#xff0c;切换到project视图&#xff1a; 2&#xff09;、修改app\src\main\res\layout\activity_main.xml文件&#xff0c;修改后如下&#xff1a; <?xml version"1.0" encoding"utf-8"?> <andr…

设置Ubuntu或树莓派系统,允许root用户ssh方式连接

Ubuntu 或 Raspbian 系统默认不允许root 用户以ssh方式连接。连接会报如下错误&#xff1a; Permission denied&#xff0c; please try again. 解决步骤&#xff1a; &#xff08;如果是树莓派系统&#xff1a;烧录到内存卡后&#xff0c;拔掉内存卡再重新插到PC机上&#x…

html基础知识

1、文字阴影代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <meta http-eq…

Vue 工作开发小技巧

一、汇总 ​ 本博客&#xff0c;记录了一些Vue在日常开发工作中比较实用的小技巧&#xff0c;后续会陆续添加更新。 ​ 1、利用Sass的:global定义全局样式。 ​ 2、在<style>内部使用v-bind给CSS属性绑定属性值。 ​ 3、父子组件传值时&#xff0c;使用.sync修饰符后…

#HarmonyOS:访问应用资源--系统资源

访问应用资源 在工程中&#xff0c;通过"$r(‘app.type.name’)"的形式引用应用资源。app代表是应用内resources目录中定义的资源&#xff1b;type代表资源类型&#xff08;或资源的存放位置&#xff09;&#xff0c;可以取“color”、“float”、“string”、“plu…

cgteamwork与shotgrid对比

最近有项目接触使用并二开cgteamwork&#xff0c; 也重新认识了cgteamwork&#xff0c;感受到国产软件的强大&#xff0c;国内中小CG公司的首选&#xff0c;原因&#xff1a; 1 上手容易&#xff0c;不会的有售前工程师教&#xff0c;他们全国各地城市到处跑。 感概业务的强大…

Linux: 查看服务器的CPU信息

在linux服务器环境下&#xff0c;可以使用cat /proc/cpuinfo命令查看当前CPU的核数等信息。 cat /proc/cpuinfo 字段解析 /proc/cpuinfo 是一个特殊的文件&#xff0c;在 Linux 系统中提供有关 CPU 的详细信息。它实际上是一个伪文件系统中的文件&#xff0c;通过它可以获取到…

智能优化算法应用:基于生物地理学算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于生物地理学算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于生物地理学算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.生物地理学算法4.实验参数设定5.算法…

Visual studio+Qt开发环境搭建以及注意事项和打开qt的.pro项目

下载qt-然后安装5.14.2_msvc2017 不知道安装那个就全选5.14.2的父级按钮 https://download.qt.io/archive/qt/5.14/5.14.2/ 安装Visual studio,下载直接下一步就行 配置Visual studio的qt环境 在线安装-重启Visual studio会自动安装 离线安装-关闭Visual studio点击安装 关闭…

c++向线程函数传递参数及编译错误排查

c向线程函数传递参数及编译错误排查 普通传递 void func(int a) {cout << "a " << a << endl; }int main() {thread t(func, 1); // 第一个是函数名字&#xff0c;第二个函数的参数t.join(); // 注意&#xff0c;不写join会报core dumped }当传…

find_package 和 find_library的区别

背景 经常看CMakeLists.txt中有find_package和find_library&#xff0c;有时候没留意以为都一样&#xff0c;其实二者差距比较大&#xff0c;下面简单记录一下。 find_package find_package(NAME), 这段代码的本质就是在找一个NAME.cmake这个文件&#xff0c;一般在安装库的…

在Java中,为什么在lambda表达式中访问局部变量时,必须将其声明为final或等效的原因是?

lambda表达式实际上是对该变量的一个拷贝而不是引用。 这样做有几个原因&#xff1a; 线程安全性&#xff1a;当一个lambda表达式被创建并传递给另一个线程时&#xff0c;它可能在另一个线程上执行。如果在lambda表达式中访问非final的局部变量&#xff0c;并且该变量在执行过…

桂电|《操作系统》实验一:UNIX/LINUX及其使用环境(实验报告)

桂林电子科技大学2023-2024学年 第 一 学期 操作系统A 实验报告 实验名称 实验一 UNIX/LINUX及其使用环境 实验指导老师&#xff1a; 成绩 院 系 计算机与信息安全学院 专业 计算机科学与技术(卓越工程) 学 号 姓名 课内序…

Docker助力前端开发,轻松打造高效应用

https://docs.docker.com/engine/reference/builder/ 构建前端镜像 在开发和部署前端应用程序时&#xff0c;使用Docker可以提供一个简便而可靠的方式来打包、分发和运行应用程序。 1. 创建Dockerfile 首先&#xff0c;我们需要创建一个Dockerfile&#xff0c;该文件用于定义…

Spring Boot+FreeMarker=打造高效Web应用

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于Spring BootFreeMarker的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一. FreeMarker是什么 二…

【点云异常点检测】MVTec AD数据集介绍

文章目录 一、简介二、每种类型模型个数 一、简介 MVTec AD&#xff08;MVTec Anomaly Detection&#xff09;数据集是用于异常检测的计算机视觉数据集。该数据集包含来自工业生产中不同材料和产品的图像&#xff0c;包括玻璃、塑料、纺织品等。每个类别都包含正常样本和异常样…

Webservice--HTTP,SOAP协议区别

1.HTTP&#xff0c;SOAP协议区别及联系 HTTP&#xff08;Hypertext Transfer Protocol&#xff09;和SOAP&#xff08;Simple Object Access Protocol&#xff09;是 WebService 技术中的两个不同协议&#xff0c;以下区别和联系&#xff1a; 区别&#xff1a; 技术目标&…

本地连锁门店经营可以借助系统实现哪些功能?

不少的连锁门店目前还是很基础的ERPPOS收银&#xff0c;其他的还是走传统的手工管理&#xff0c;大多连锁老板知道借助信息化系统可以帮助门店实现精细化管理&#xff0c;提高运营效率&#xff0c;降低成本&#xff0c;增强竞争力&#xff0c;但不知道怎么去做&#xff0c;能做…

每日汇评:黄金需要突破2050美元的供应区域才能延续复苏

周四早间&#xff0c;金价接近每盎司2,030美元&#xff0c;创下6天来的最高水平&#xff1b; 美联储确认鸽派政策转向&#xff0c;美元和美国国债收益率双双下挫&#xff1b; 英国央行和欧洲央行2023年的最终政策公告可能会进一步推高金价&#xff1b; 随着投资者重新评估美联储…