x的平方根
- 题解1 袖珍计算器算法
- 题解2 二分查找
- 题解3 牛顿迭代
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。
示例 1:
输入:x = 4
输出:2
示例 2:
输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842…, 由于返回类型是整数,小数部分将被舍去。
提示:
0 <= x <= 231 - 1
题解1 袖珍计算器算法
class Solution {
public:int mySqrt(int x) {if (x == 0) {return 0;}int ans = exp(0.5 * log(x));return ((long long)(ans + 1) * (ans + 1) <= x ? ans + 1 : ans);}
};
题解2 二分查找
class Solution {
public:int mySqrt(int x) {int l = 0, r = x, ans = -1;while (l <= r) {int mid = l + (r - l) / 2;if ((long long)mid * mid <= x) {ans = mid;l = mid + 1;} else {r = mid - 1;}}return ans;}
};
题解3 牛顿迭代
class Solution {
public:int mySqrt(int x) {if (x == 0) {return 0;}double C = x, x0 = x;while (true) {double xi = 0.5 * (x0 + C / x0);if (fabs(x0 - xi) < 1e-7) {break;}x0 = xi;}return int(x0);}
};