java并发-ReentrantReadWriteLock读写锁

文章目录

  • 介绍
  • 读写锁的获取规则
  • 示例
  • 源码解读
    • ReentrantReadWriteLock核心变量
    • ReentrantReadWriteLock相关属性和构造函数
    • Sync静态内部类的核心属性
    • tryAcquireShared方法
    • tryAcquire方法
    • 锁降级
  • 总结

介绍

读写锁就是将一个锁拆分为读锁和写锁两个锁。

读写锁的获取规则

  • 如果有一个线程已经占用了读锁,则此时其他线程如果要申请读锁,可以申请成功。
  • 如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待 释放读锁,因为读写不能同时操作。
  • 如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,都必须等待之前的线程 释放写锁,同样也因为读写不能同时,并且两个线程不应该同时写。

总之,要么是一个或多个线程同时有读锁,要么是一个线程有写锁,但是两者不会同 时出现。也可以总结为:读读共享、其他都互斥(写写互斥、读写互斥、写读互斥)。

示例

public class ReadWriteLockDemo {private static final ReentrantReadWriteLock reentrantReadWriteLock = newReentrantReadWriteLock(false);private static final ReentrantReadWriteLock.ReadLock readLock =reentrantReadWriteLock.readLock();private static final ReentrantReadWriteLock.WriteLock writeLock =reentrantReadWriteLock.writeLock();private static void read() {readLock.lock();try {System.out.println(Thread.currentThread().getName() + "得到读锁,正在读取");Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();} finally {System.out.println(Thread.currentThread().getName() + "释放读锁");readLock.unlock();}}private static void write() {writeLock.lock();try {System.out.println(Thread.currentThread().getName() + "得到写锁,正在写入");Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();} finally {System.out.println(Thread.currentThread().getName() + "释放写锁");writeLock.unlock();}}public static void main(String[] args) throws InterruptedException {new Thread(() -> read()).start();new Thread(() -> read()).start();new Thread(() -> write()).start();new Thread(() -> write()).start();}
}

得到的运行结果

Thread-0得到读锁,正在读取
Thread-1得到读锁,正在读取
Thread-0释放读锁
Thread-1释放读锁
Thread-2得到写锁,正在写入
Thread-2释放写锁
Thread-3得到写锁,正在写入
Thread-3释放写锁

读写锁适用场合:适用于一般场合,ReadWriteLock 适用于 读多写少的情况,合理使用可以进一步提高并发效率。

源码解读

public interface ReadWriteLock {
/**
* Returns the lock used for reading.
*
* @return the lock used for reading.
*/
Lock readLock();
/**
* Returns the lock used for writing.
*
* @return the lock used for writing.
*/
Lock writeLock();
}

ReentrantReadWriteLock核心变量

  1. ReaderLock:读锁,实现了Lock接口
  2. WriterLock:写锁,也实现了Lock接口
  3. Sync:继承自AbstractQueuedSynchronize(AQS),可以为公平锁FairSync 或 非公平锁NonfairSync

ReentrantReadWriteLock相关属性和构造函数

/** 内部提供的读锁 */
private final ReentrantReadWriteLock.ReadLock readerLock;
/** 内部提供的写锁 */
private final ReentrantReadWriteLock.WriteLock writerLock;
/** AQS来实现的同步器 */
final Sync sync;
/**
* Creates a new {@code ReentrantReadWriteLock} with
* 默认创建非公平的读写锁
*/
public ReentrantReadWriteLock() {this(false);
}
/**
* Creates a new {@code ReentrantReadWriteLock} with
* the given fairness policy.
*
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}

Sync静态内部类的核心属性

abstract static class Sync extends AbstractQueuedSynchronizer {
// 版本序列号
private static final long serialVersionUID = 6317671515068378041L;
// 高16位为读锁,低16位为写锁
static final int SHARED_SHIFT = 16;
// 读锁单位
static final int SHARED_UNIT = (1 << SHARED_SHIFT);
// 读锁最大数量
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;
// 写锁最大数量
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
// 本地线程计数器
private transient ThreadLocalHoldCounter readHolds;
// 缓存的计数器
private transient HoldCounter cachedHoldCounter;
// 第一个读线程
private transient Thread firstReader = null;
// 第一个读线程的计数
private transient int firstReaderHoldCount;
}

tryAcquireShared方法

该方法其目的是尝试获取共享锁。

protected final int tryAcquireShared(int unused) {for (;;) {int c = getState();int nextc = c + (1 << 16);if (nextc < c) {throw new Error("Maximum lock count exceeded");}if (exclusiveCount(c) != 0 && owner != Thread.currentThread())return -1;if (compareAndSetState(c, nextc))return 1;}
}
  1. int c = getState();: 获取当前锁的状态值。在共享模式中,这个状态值通常表示持有锁的线程数量或其他相关信息。
  2. int nextc = c + (1 << 16);: 计算下一个状态值,这里是将当前状态值增加(左移)16位。在共享模式中,通常用高16位表示持有锁的线程数量。
  3. if (nextc < c) { throw new Error("Maximum lock count exceeded"); }: 检查是否超过了最大锁数量,如果超过了,抛出一个错误。这是一个防止溢出的保护措施。
  4. if (exclusiveCount(c) != 0 && owner != Thread.currentThread()) return -1;: 检查是否有线程持有独占锁(exclusiveCount© != 0),如果有且不是当前线程,则返回-1表示获取失败。这是因为共享锁和独占锁通常不能同时持有,这里保证了只有在没有独占锁被持有时,才能获取共享锁。
  5. if (compareAndSetState(c, nextc)) return 1;: 使用原子操作尝试将状态值更新为nextc。如果成功,表示获取锁成功,返回1。这里使用了 compareAndSetState 方法,该方法通常是一个原子的比较并设置操作,用于确保在并发情况下只有一个线程可以成功修改状态值。

tryAcquire方法

该方法尝试获取独占锁(写锁)

protected final boolean tryAcquire(int acquires) {/** Walkthrough:* 1. If read count nonzero or write count nonzero* and owner is a different thread, fail.* 2. If count would saturate, fail. (This can only* happen if count is already nonzero.)* 3. Otherwise, this thread is eligible for lock if* it is either a reentrant acquire or* queue policy allows it. If so, update state* and set owner.*/Thread current = Thread.currentThread();int c = getState(); // 获取当前同步状态// 获取独占锁(写锁)的被获取的数量int w = exclusiveCount(c);if (c != 0) {// (Note: if c != 0 and w == 0 then shared count != 0)// 1. 如果同步状态不为0,且写状态为0,则表示当前同步状态被读锁获取// 2. 或者当前拥有写锁的线程不是当前线程if (w == 0 || current != getExclusiveOwnerThread())return false;if (w + exclusiveCount(acquires) > MAX_COUNT)throw new Error("Maximum lock count exceeded");// Reentrant acquiresetState(c + acquires); // 重入获取锁,更新同步状态return true;}// 如果没有读锁被持有,进入这个分支if (writerShouldBlock() || !compareAndSetState(c, c + acquires))return false;setExclusiveOwnerThread(current); // 设置当前线程为独占锁的拥有者return true;
}

解释:

  1. Thread current = Thread.currentThread();: 获取当前线程。
  2. int c = getState();: 获取当前同步状态。
  3. int w = exclusiveCount(c);: 获取独占锁(写锁)的被获取的数量。
  4. if (c != 0) { ... }: 如果当前同步状态不为0,表示有读锁或者写锁已经被持有。
  • 如果写锁数量为0或者当前拥有写锁的线程不是当前线程,则返回false表示获取锁失败。
  • 如果写锁数量不为0且当前拥有写锁的线程是当前线程,表示是重入获取锁。检查是否会超过最大锁数量,如果超过则抛出异常,否则更新同步状态并返回true。
  1. 如果当前同步状态为0,表示没有读锁被持有,进入这个分支。
  • writerShouldBlock(): 检查是否应该阻塞写锁,根据具体实现。
  • compareAndSetState(c, c + acquires): 使用CAS原子操作尝试获取锁。如果获取失败,表示有其他线程同时竞争锁,返回false。
  • 如果成功获取锁,设置当前线程为独占锁的拥有者,并返回true。

锁降级

意思就是持住写锁,再获取到读锁。
如下场景:

  1. 获取写锁: 线程首先获取了一个写锁,以保护一段临界区或共享资源。
  2. 完成写操作: 在写锁的保护下,线程执行了一些修改共享资源的操作。
  3. 获取读锁: 在完成写操作后,线程希望保持对共享资源的访问,但此时不再需要写锁的保护了。于是,线程降级锁,将写锁降级为读锁。
  4. 释放写锁: 最后,线程释放之前持有的写锁,只保持了读锁。

总结

此文章主要介绍了ReentrantReadWriteLock使用以及相关源码部分;更深刻的去理解读写锁的使用和使用场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/219359.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

33KB代码实现短网址(php+mysql) V2.0

查立得短网址 V2.0 请保留署名信息;请勿用于非法用途 系统简述&#xff1a;三五十KB代码实现短网址功能前后端都登陆,相对第一版代码已重构。 开发环境&#xff1a;宝塔:linux php Nginx 7.1/mysql5.6;建议环境&#xff1a;linux php 5.4-7.3; 空间域名&#xff1a;域名解析到对…

ELK简单介绍二

学习目标 能够部署kibana并连接elasticsearch集群能够通过kibana查看elasticsearch索引信息知道用filebeat收集日志相对于logstash的优点能够安装filebeat能够使用filebeat收集日志并传输给logstash kibana kibana介绍 Kibana是一个开源的可视化平台,可以为ElasticSearch集群…

电子取证中Chrome各版本解密Cookies、LoginData账号密码、历史记录

文章目录 1.前置知识点2.对于80.X以前版本的解密拿masterkey的几种方法方法一 直接在目标机器运行Mimikatz提取方法二 转储lsass.exe 进程从内存提取masterkey方法三 导出SAM注册表 提取user hash 解密masterkey文件&#xff08;有点麻烦不太推荐&#xff09;方法四 已知用户密…

插入算法(C语言)

#include<cstdio> #include<iostream> #define N 9 using namespace std; int main() {int arr[N1] { 1,4,7,13,16,19,22,25,280 }; int in,i,j;//要插入的数字//打印要插入数字的数组所有元素printf("插入前的数组: ");for ( i 0; i <N; i){print…

STM32G030C8T6:使用外部晶振配置LED灯闪烁

本专栏记录STM32开发各个功能的详细过程&#xff0c;方便自己后续查看&#xff0c;当然也供正在入门STM32单片机的兄弟们参考&#xff1b; 本小节的目标是&#xff0c;使用STM32G030C8T6单片机&#xff0c;通过STM32CubeMX软件&#xff0c;配置并使用外部8MHz晶振&#xff0c;实…

6. Service详解

6. Service详解 文章目录 6. Service详解6.1 Service介绍6.2 Service类型6.3 Service使用6.3.1 实验环境准备6.3.2 ClusterIP类型的Service6.3.3 HeadLess类型的Service6.3.3.1 deployment和statefulset区别6.3.3.2 statefulset deployment 区别 6.3.4 NodePort类型的Service6.…

联邦蒸馏领域中,有哪些有意思的工作

联邦蒸馏领域中&#xff0c;有哪些有意思的工作 王婆卖瓜&#xff0c;自卖自夸。这个博客&#xff0c;我简要向大家推荐一下自己近期在联邦蒸馏方面的研究工作&#xff0c;按照心目中创新度从高到低进行排序&#xff0c;与工作的扎实程度以及发表的会议期刊等级无关。如有不妥…

扩展操作码指令格式

指令 操作码地址码 \quad \quad 判断几地址指令 开头4位不是全1, 则表示是三地址指令 开头4位全1, 后面4位不是全1, 则为二地址指令 前面12全1, 则为零地址指令 当然啦这只是一种扩展方法, 如果想扩展更多, 可以将1110留作扩展操作码 较短的操作码, 我们对它的译码和分析的时间…

测试:HTTP请求中,请求头(Headers)

请求头字段及其用途 在HTTP请求中&#xff0c;请求头&#xff08;Headers&#xff09;是包含了关于客户端环境和请求本身的信息的数据结构&#xff0c;它在每次请求时都会被发送到服务器。 请求头的字段非常多样&#xff0c;以下是一些常见的请求头字段及其用途的详细说明&am…

点云几何 之 判断某一点是否在三角形的边上(3)

点云几何 之 判断某一点是否在三角形的边上&#xff08;3&#xff09; 一、算法介绍二、算法实现1.代码2.结果 总结 一、算法介绍 判断某一点是否在三角形的边上 之前已经介绍了点在三角形的内外判断方法&#xff0c;这里增加点恰好在三角形边上的判断方法 &#xff08;本质上…

节流防抖:提升前端性能的秘密武器(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

vue3使用mars3d实现地图轮播高亮,且每个区域颜色不一样

效果图(珙县就是轮播高亮的效果) 思路:初始化一张完整的地图&#xff0c;然后定时器去挨个生成每个县上的地图&#xff0c;并且覆盖在原来的位置&#xff0c;每到一定的时间&#xff0c;就清除之前生成高亮图并且生成下一张高亮图 如何引入地图 上篇文章已详细发过 略 父组…

【JavaWeb学习笔记】7 - Servlet入门开发

零、在线文档 Servlet 3.1 API Documentation - Apache Tomcat 8.0.53 一、Servlet基本介绍 1.为什么出现Servlet 提出需求:请用你现有的html css javascript&#xff0c;开发网站&#xff0c;比如可以让用户留言/购物/支付,你能搞定吗? 不能 这几个不能直接操作数据库 …

Java 语言关键字

Java关键字是电脑语言里事先定义的&#xff0c;有特别意义的标识符&#xff0c;有时又叫保留字&#xff0c;还有特别意义的变量。Java的关键字对Java的编译器有特殊的意义&#xff0c;他们用来表示一种数据类型&#xff0c;或者表示程序的结构等&#xff0c;关键字不能用作变量…

20231213给Ubuntu18.04.6LTS新加一块HDD机械硬盘

20231213给Ubuntu18.04.6LTS新加一块HDD机械硬盘 2023/12/13 22:50 rootrootrootroot-X99-Turbo:~$ cat /etc/issue Ubuntu 18.04.6 LTS \n \l sudo fdisk -l rootrootrootroot-X99-Turbo:~$ rootrootrootroot-X99-Turbo:~$ sudo fdisk -lu Disk /dev/sda: 2.7 TiB, 300059298…

【源码解析】flink sql执行源码概述:flink sql执行过程中有哪些阶段,这些阶段的源码大概位置在哪里

文章目录 一. sql执行流程源码分析1. Sql语句解析成语法树阶段&#xff08;SQL - > SqlNode&#xff09;2. SqlNode 验证&#xff08;SqlNode – >Operation&#xff09;3. 语义分析&#xff08;Operation - > RelNode&#xff09;4. 优化阶段&#xff08;RelNode - &…

LangChain 25: SQL Agent通过自然语言查询数据库sqlite

LangChain系列文章 LangChain 实现给动物取名字&#xff0c;LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数据库Faiss存储&#xff0c;读取YouTube的视频文本搜索I…

Java中的多态到底是什么?

Java中的多态到底是什么&#xff1f; 在Java中&#xff0c;多态是面向对象编程中的一个重要概念&#xff0c;它有助于提高代码的灵活性和可维护性。多态分为编译时多态和运行时多态。 编译时多态&#xff08;静态多态&#xff09;&#xff1a; 编译时多态是指在编译阶段确定方…

2023全国大学生数据分析大赛A题完整论文教学

大家好呀&#xff0c;从发布赛题一直到现在&#xff0c;总算完成了全国大学生数据分析大赛A题某电商平台用户行为分析与挖掘完整的成品论文。 本论文可以保证原创&#xff0c;保证高质量。绝不是随便引用一大堆模型和代码复制粘贴进来完全没有应用糊弄人的垃圾半成品论文。 实…