理解排序算法:冒泡排序、选择排序与归并排序

简介: 在计算机科学中,排序算法是基础且重要的概念。本文将介绍三种常见的排序方法:冒泡排序、选择排序和归并排序。我们将探讨它们的工作原理、特点和适用场景,以帮助读者更好地理解和选择合适的排序方法。

冒泡排序 

冒泡排序是一种简单的排序算法。它通过重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。这个过程重复进行,直到没有再需要交换的元素,此时数列已经排序完成。冒泡排序的特点是实现简单,但效率较低,特别是在处理大数据集时。

 

 

void BubbleSort(int* a, int n)//使用bool来进阶冒泡 ,当有一层不交换,就代表已经排完序,防止永久时间复杂度都是O(n^2)
{for (int j = 0; j < n; j++){bool exange = false;for (int i = 1; i < n - j; i++){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exange = true;}}if (exange == false)break;}}

 冒泡排序的特性总结:

1. 冒泡排序是一种非常容易理解的排序

2. 时间复杂度:O(N^2)

3. 空间复杂度:O(1)

4. 稳定性:稳定

选择排序

 

选择排序是一种简单直观的排序算法,广泛应用于计算机科学教学和一些基础编程任务中。本文将详细介绍选择排序的工作原理、具体实现步骤、算法特点以及适用场景,帮助读者更好地理解和使用这种排序方法。

一、选择排序的工作原理

选择排序算法的基本思想是:

首先在未排序的序列中找到最小(或最大)的元素,然后将其放置在序列的起始位置,接着再从剩余未排序的元素中继续寻找最小(或最大)的元素,然后放到已排序序列的末尾。这个过程一直重复,直到所有元素都被排序。

二、选择排序的步骤

  1. 从未排序的序列中找到最小(或最大)的元素。
  2. 将找到的最小(或最大)元素与序列的第一个元素交换位置(如果最小元素就是第一个元素,则自身和自身交换)。
  3. 重复上述过程,每次交换后,排序序列的长度就增加一个元素,而未排序序列的长度减少一个元素。
  4. 当未排序序列的长度减少到0时,排序就完成了。

三、选择排序的特点

  • 简单直观:选择排序的算法逻辑简单,易于理解和实现。
  • 时间复杂度:在最好、最坏和平均情况下,时间复杂度都是O(n²)。
  • 不稳定排序:选择排序不是稳定的排序算法,相等的元素可能在排序过程中改变其原有的顺序。
  • 原地排序:选择排序不需要额外的存储空间,它是一种原地排序算法。

四、选择排序的适用场景

由于选择排序的效率较低,它通常不适用于数据量较大的排序任务。然而,在数据量较小或者对算法的时间复杂度要求不高的场景中,选择排序由于其实现的简单性,仍然是一个不错的选择。特别是在教学和学习算法的过程中,选择排序是理解基本排序概念的良好起点。

总结: 选择排序以其简单直观的特点,在编程教学和小规模数据处理中有着一席之地。虽然在处理大量数据时效率不高,但它作为基础排序算法,对于理解更复杂的排序技术提供了重要的基础。

void SelectSort(int* a, int n)
{int begin = 0;int end = n - 1;while (begin < end){int mini = begin; int max = begin;for (int i = begin+1; i <= end; ++i){if (a[i] < a[mini]){mini = i;}if (a[i] > a[max]){max = i;}}Swap(&a[begin], &a[mini]);if (max == begin){max = mini;}Swap(&a[end], &a[max]);begin++;end--;}}

 归并排序

 

 

简介: 归并排序是一种高效且稳定的排序算法,通过分治法实现对数据的高效排序。本文旨在详细介绍归并排序的工作原理、具体实现步骤、算法的特点以及适用场景,帮助读者深入理解并有效地应用这种排序方法。

一、归并排序的工作原理

归并排序的核心思想是将两个有序的数组合并成一个更大的有序数组。具体来说,它将原始数组分成两半,分别对这两半进行排序,然后将排序好的两个半部分合并在一起。这个过程是递归进行的,最终达到完全排序的目的。

二、归并排序的步骤

  1. 分解:将原始数组分解成两个大小大致相等的子数组。
  2. 解决:递归地对这两个子数组进行归并排序。
  3. 合并:将两个已排序的子数组合并成一个单一的已排序数组。

三、归并排序的特点

  • 高效稳定:归并排序在最坏、最好和平均情况下的时间复杂度均为O(n log n),是一种非常高效的排序算法。同时,它也是一种稳定的排序,即相等的元素在排序后会保持其原有顺序。
  • 分治策略:归并排序是分治法思想的典型应用,通过将问题分解为可管理的子问题来简化复杂性。
  • 额外空间需求:归并排序需要额外的空间来存储临时数组,这是它的一个缺点。

四、归并排序的适用场景

归并排序非常适合处理大数据集,特别是在数据无法一次性装入内存时。由于其稳定性和高效性,它广泛应用于数据库和文件系统等领域,是处理大规模数据排序的理想选择。

总结: 归并排序以其高效、稳定的特性,在大数据处理和复杂系统中占有重要位置。尽管需要额外的存储空间,但其优越的性能使其成为解决复杂排序问题的强大工具。

void _MergeSort(int* a, int begin, int end, int* tmp)//每次需要开辟数组且要对数组进行分区,所以调用子函数
{int mid = (begin + end) / 2;//[begin , mid] [mid +1, end]_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid + 1, end, tmp);//后序逻辑 归并int begin1 = begin, end1 = mid;int begin2 = mid + 1, end2 = end;int i = begin;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));}
void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");return;}_MergeSort(a, 0, n - 1, tmp);free(tmp);
}

 

总结: 在本系列博客文章中,我们深入探讨了三种经典的排序算法:冒泡排序、选择排序和归并排序。每种排序方法都有其独特的工作原理和应用场景,从简单直观的冒泡排序和选择排序到高效稳定的归并排序,这些算法为我们提供了不同的数据组织和处理方式。

冒泡排序以其实现的简单性和直观性而闻名,适合用于小数据集和教学目的。选择排序,尽管时间复杂度较高,但在需要减少交换次数的情况下仍是一个不错的选择。归并排序则以其高效率和稳定性在大数据处理中发挥重要作用,尤其适用于无法一次性装入内存的大规模数据集。

理解这些排序算法的原理和特点对于任何涉及数据处理的程序员来说都是至关重要的。它们不仅是计算机科学的基础,也是解决实际问题的强大工具。我们希望这些文章能够帮助读者更好地理解这些基本算法,并在适当的场合中作出恰当的选择。

感谢您阅读本系列关于排序算法的探索。我们期待在未来的文章中继续为您提供更多有价值的技术洞见和实用建议。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/216930.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

logback日志框架使用

依赖引入 <dependency><groupId>ch.qos.logback</groupId><artifactId>logback-classic</artifactId><version>1.1.7</version> </dependency> 使用logback日志框架只需要引入以上即可&#xff0c;(我们平时使用较多的Slf4j…

浏览器提示不安全

当我们使用浏览器访问一个网站时&#xff0c;如果该网站使用的是HTTPS连接&#xff0c;那么浏览器会对其进行安全性的检查。其中一项重要的检查就是确认该网站是否拥有有效的SSL证书。然而&#xff0c;有时我们会在浏览器中看到“不安全”的警告&#xff0c;这通常是由于SSL证书…

三天精通Selenium Web 自动化 - Selenium(Java)环境搭建

1 下载JDK JDK下载地址&#xff1a;http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 2 安装和配置JDK 安装目录尽量不要有空格 D:\Java\jdk1.8.0_91; D:\Java\jre8设置环境变量&#xff1a; “我的电脑”->右键->“属性”->…

C.小苯的排列构造

C-小苯的排列构造_北京信息科技大学第十五届程序设计竞赛&#xff08;同步赛&#xff09; (nowcoder.com) 凑2很容易想出来&#xff0c;但是2 4 1 3 这个内核不好想&#xff0c;算是一种尝试和经验吧 #include<bits/stdc.h> using namespace std;int n;int main() {cin&g…

今天公司来了个拿 30K 出来的测试,算是见识到了基础的天花板

今天上班开早会就是新人见面仪式&#xff0c;听说来了个很厉害的大佬&#xff0c;年纪还不大&#xff0c;是上家公司离职过来的&#xff0c;薪资已经达到中高等水平&#xff0c;很多人都好奇不已&#xff0c;能拿到这个薪资应该人不简单&#xff0c;果然&#xff0c;自我介绍的…

CPU、内存与硬盘及IO操作

目录 1、概念简介 1.1 CPU&#xff08;Central Processing Unit&#xff0c;中央处理器&#xff09; 1.2 硬盘&#xff08;Hard Disk Drive&#xff09; 1.3 内存&#xff08;Memory&#xff09; 2、计算机程序在进行io读写操作时&#xff0c;这三者的功能和实现原理 1、概…

【C语言】结构体实现位段

引言 对位段进行介绍&#xff0c;什么是位段&#xff0c;位段如何节省空间&#xff0c;位段的内存分布&#xff0c;位段存在的跨平台问题&#xff0c;及位段的应用。 ✨ 猪巴戒&#xff1a;个人主页✨ 所属专栏&#xff1a;《C语言进阶》 &#x1f388;跟着猪巴戒&#xff0c;…

使用paddleocr识别图片文本的一种方案

pdf文本分为两种&#xff0c;一种是标准的pdf格式的文本&#xff0c;这种无需利用ocr识别&#xff0c;另外一种就是图片文本&#xff0c;这种需要进行ocr的识别。 OCR 识别文本和文本区域 ppstructure是paddleocr里面的一个子库&#xff0c;可以识别文档的页眉页脚、正文、标…

从手工测试进阶中高级测试?如何突破职业瓶颈...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、手工测试如何进…

Linux:gdb的简单使用

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》《Linux》 文章目录 前言一、前置理解二、使用总结 前言 gdb是Linux中的调试代码的工具 一、前置理解 我们都知道要调试一份代码&#xff0c;这份代码的发布模式必须是debug。那你知道在li…

jquery实现省市区三级联动

一、技术: 前端采用的是jsp页面 后端采用springmvc+mybatis+mysql8 效果图 二、cascadeSelect.jsp页面 <%@ page contentType="text/html;charset=UTF-8" language="java" %> <%String path = request.getContextPath();String basePath = r…

YOLOv8改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv8(超级轻量化精度更高)

一、本文介绍 本文给大家带来利用RT-DETR模型主干HGNet去替换YOLOv8的主干&#xff0c;RT-DETR是今年由百度推出的第一款实时的ViT模型&#xff0c;其在实时检测的领域上号称是打败了YOLO系列&#xff0c;其利用两个主干一个是HGNet一个是ResNet&#xff0c;其中HGNet就是我们…

Mybatis映射接口的动态代理实现原理

Mybatis映射接口的动态代理实现原理 在上一节中&#xff0c;我们介绍了MyBatis的核心配置文件加载流程&#xff0c;Mybatis核心配置文件加载流程详解 在文中&#xff0c;我们介绍了MyBatis在加载配置文件的过程中会针对每个接口类都生成一个相应的MapperProxyFactory动态代理工…

【上海大学数字逻辑实验报告】六、时序电路

一、 实验目的 掌握同步二进制计数器和移位寄存器的原理。学会用分立元件构成2位同步二进制加计数器。学会在Quartus II上设计单向移位寄存器。学会在Quartus II上设计环形计数器。 二、 实验原理 同步计数器是指计数器中的各触发器的时钟脉冲输入端连接在一起&#xff0c;接…

FL Studio Producer Edition 21.2.2.3914中文汉化破解版新功能介绍及下载安装教程

FL Studio Producer Edition 21.2.2.3914中文汉化破解版 也就是 Image-Line 出品的一款功能强大的编曲软件&#xff0c;全名 Fruity Loops Studio 简称“FL Studio”今天突然的发现我们经常使用的水果音乐制作软件 FL STUDIO 居然从FL STUDIO 21.1.1 一下子跨越了版本号到了FL …

【产品经理】需求池和版本树

在这个人人都是产品经理的时代&#xff0c;每位入行的产品人进阶速度与到达高度各有不同。本文作者结合自身三年产品行业的经历&#xff0c;根据案例拆解产品行业的极简研发过程、需求池、版本树、产品自我优化等相关具体方法论。 一、产品研发的极简过程 1. 产品概述 产品就…

Server check fail, please check server xxx.xxx.xxx.xxx,port 9848 is available

记录一次服务调用中的错误 背景&#xff1a;我使用了nacos2.x的版本&#xff0c;同时在同一台服务器的三个docker容器中部署了nacos1、2、3&#xff0c;并将它们连接到了同一个docker网络 错误&#xff1a;Server check fail, please check server xxx.xxx.xxx.xxx,port 9848 …

C/C++,动态 DP 问题的计算方法与源程序

1 文本格式 #include <bits/stdc.h> using namespace std; typedef long long LL; const int maxn 500010; const int INF 0x3f3f3f3f; int Begin[maxn], Next[maxn], To[maxn], e, n, m; int size[maxn], son[maxn], top[maxn], fa[maxn], dis[maxn], p[maxn], i…

AI PC行业深度研究报告:AI PC革新端侧AI交互体验

今天分享的人工智能系列深度研究报告&#xff1a;《AI PC行业深度研究报告&#xff1a;AI PC革新端侧AI交互体验》。 &#xff08;报告出品方&#xff1a;华创证券&#xff09; 报告共计&#xff1a;28页 点击添加图片描述&#xff08;最多60个字&#xff09;编辑 一、硬件端…

12.字符串拼接【2023.12.4】

1.问题描述 我们在编程过程中经常会遇到把不同字符串拼接在一起的情况&#xff0c;从而更直观地展示给用户我们所要表达的信息。本题将给出两个字符串&#xff0c;请依次将这两个字符串拼接在一起。 2.解决思路 用字符串拼接符 进行连接两个字符串 3.代码实现 str1input(…