YOLOv8改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv8(超级轻量化精度更高)

一、本文介绍

本文给大家带来利用RT-DETR模型主干HGNet去替换YOLOv8的主干,RT-DETR是今年由百度推出的第一款实时的ViT模型,其在实时检测的领域上号称是打败了YOLO系列,其利用两个主干一个是HGNet一个是ResNet,其中HGNet就是我们今天来讲解的网络结构模型(亲测这个HGNet网络比YOLO的主干更加轻量化和精度更高的主干,非常适合轻量化研究的读者),这个网络结构目前还没有推出论文,所以其理论知识在网络上也是非常的少,我也是根据网络结构图进行了分析(亲测替换之后主干GFLOPs降低到7.7,精度mAP提高0.05)。

轻量化效果:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图->  

这次试验我用的数据集大概有七八百张照片训练了150个epochs,虽然没有完全拟合但是效果有很高的涨点幅度,所以大家可以进行尝试毕竟不同的数据集上效果也可能差很多,同时我在后面给了多种yaml文件大家可以分别进行实验来检验效果。

可以看到这个图片的mAP50和mAP50-95都有一定程度的上涨。

目录

一、本文介绍

二、HGNetV2原理讲解

三、HGNetV2的代码

四、手把手教你添加HGNetV2 

4. 1 HGNetV2-l的yaml文件(此为对比试验版本)

4.2 HGNetV2-x的yaml文件

五、运行成功记录

六、本文总结


二、HGNetV2原理讲解

 

论文地址:RT-DETR论文地址

本文代码来源:HGNetV2的代码来源


PP-HGNet 骨干网络的整体结构如下: 

其中,PP-HGNet是由多个HG-Block组成,HG-Block的细节如下:

上面的图表是PP-HGNet神经网络架构的概览,下面我会对其中的每一个模块进行分析:

1. Stem层:这是网络的初始预处理层,通常包含卷积层,开始从原始输入数据中提取特征。

2. HG(层次图)块:这些块是网络的核心组件,设计用于以层次化的方式处理数据。每个HG块可能处理数据的不同抽象层次,允许网络从低级和高级特征中学习。

3. LDS(可学习的下采样)层:位于HG块之间的这些层可能执行下采样操作,减少特征图的空间维度,减少计算负载并可能增加后续层的感受野。

4. GAP(全局平均池化):在最终分类之前,使用GAP层将特征图的空间维度减少到每个特征图一个向量,有助于提高网络对输入数据空间变换的鲁棒性。

5. 最终的卷积和全连接(FC)层:网络以一系列执行最终分类任务的层结束。这通常涉及一个卷积层(有时称为1x1卷积)来组合特征,然后是将这些特征映射到所需输出类别数量的全连接层。 

这种架构的主要思想是利用层次化的方法来提取特征,其中复杂的模式可以在不同的规模和抽象层次上学习,提高网络处理复杂图像数据的能力。

这种分层和高效的处理对于图像分类等复杂任务非常有利,在这些任务中,精确预测至关重要的是在不同规模上识别复杂的模式和特征。图表还显示了HG块的扩展视图,包括多个不同滤波器大小的卷积层,以捕获多样化的特征,然后通过一个元素级相加或连接的操作(由+符号表示)在数据传递到下一层之前。

 


三、HGNetV2的代码

需要注意的是HGNetV2这个版本的所需组件已经集成在YOLOv8的仓库了,所以我们无需做任何的代码层面的改动,只需要设计yaml文件来配合Neck部分融合特征即可了,但是我还是把代码放在这里,供有兴趣的读者看一下,也和上面的结构进行一个对照。主要的三个结构HGStem,HGBlock,DWConv。

class HGStem(nn.Module):"""StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py"""def __init__(self, c1, cm, c2):"""Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""super().__init__()self.stem1 = Conv(c1, cm, 3, 2)self.stem2a = Conv(cm, cm // 2, 2, 1, 0)self.stem2b = Conv(cm // 2, cm, 2, 1, 0)self.stem3 = Conv(cm * 2, cm, 3, 2)self.stem4 = Conv(cm, c2, 1, 1)self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)def forward(self, x):"""Forward pass of a PPHGNetV2 backbone layer."""x = self.stem1(x)x = F.pad(x, [0, 1, 0, 1])x2 = self.stem2a(x)x2 = F.pad(x2, [0, 1, 0, 1])x2 = self.stem2b(x2)x1 = self.pool(x)x = torch.cat([x1, x2], dim=1)x = self.stem3(x)x = self.stem4(x)return xclass HGBlock(nn.Module):"""HG_Block of PPHGNetV2 with 2 convolutions and LightConv.https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py"""def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=True):"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""super().__init__()block = LightConv if lightconv else Convself.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze convself.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation convself.add = shortcut and c1 == c2def forward(self, x):"""Forward pass of a PPHGNetV2 backbone layer."""y = [x]y.extend(m(y[-1]) for m in self.m)y = self.ec(self.sc(torch.cat(y, 1)))return y + x if self.add else ydef autopad(k, p=None, d=1):  # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class DWConv(Conv):"""Depth-wise convolution."""def __init__(self, c1, c2, k=1, s=1, d=1, act=True):  # ch_in, ch_out, kernel, stride, dilation, activation"""Initialize Depth-wise convolution with given parameters."""super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)


四、手把手教你添加HGNetV2 

这里不需要改动什么,如果你的版本是老版本的,没有集成RT-DETR的版本,那么大家可以下载一个新版本可以参考其中的怎么改,我这里就不在描述,否则拉下某一步在导致大家报错。

 


4. 1 HGNetV2-l的yaml文件(此为对比试验版本)

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, HGStem, [32, 48]]  # 0-P2/4- [-1, 6, HGBlock, [48, 128, 3]]  # stage 1- [-1, 1, DWConv, [128, 3, 2, 1, False]]  # 2-P3/8- [-1, 6, HGBlock, [96, 512, 3]]   # stage 2- [-1, 1, DWConv, [512, 3, 2, 1, False]]  # 4-P3/16- [-1, 6, HGBlock, [192, 1024, 5, True, False]]  # cm, c2, k, light, shortcut- [-1, 6, HGBlock, [192, 1024, 5, True, True]]- [-1, 6, HGBlock, [192, 1024, 5, True, True]]  # stage 3- [-1, 1, DWConv, [1024, 3, 2, 1, False]]  # 8-P4/32- [-1, 6, HGBlock, [384, 2048, 5, True, False]]  # stage 4- [-1, 1, SPPF, [1024, 5]]  # 10# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 7], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 13- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 3], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

 


4.2 HGNetV2-x的yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]
backbone:# [from, repeats, module, args]- [-1, 1, HGStem, [32, 64]]  # 0-P2/4- [-1, 6, HGBlock, [64, 128, 3]]  # stage 1- [-1, 1, DWConv, [128, 3, 2, 1, False]]  # 2-P3/8- [-1, 6, HGBlock, [128, 512, 3]]- [-1, 6, HGBlock, [128, 512, 3, False, True]]   # 4-stage 2- [-1, 1, DWConv, [512, 3, 2, 1, False]]  # 5-P3/16- [-1, 6, HGBlock, [256, 1024, 5, True, False]]  # cm, c2, k, light, shortcut- [-1, 6, HGBlock, [256, 1024, 5, True, True]]- [-1, 6, HGBlock, [256, 1024, 5, True, True]]- [-1, 6, HGBlock, [256, 1024, 5, True, True]]- [-1, 6, HGBlock, [256, 1024, 5, True, True]]  # 10-stage 3- [-1, 1, DWConv, [1024, 3, 2, 1, False]]  # 11-P4/32- [-1, 6, HGBlock, [512, 2048, 5, True, False]]- [-1, 6, HGBlock, [512, 2048, 5, True, True]]  # 13-stage 4- [-1, 1, SPPF, [1024, 5]]  # 14# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 15- [[-1, 10], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 16- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 19 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 16], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 22 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 14], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 25 (P5/32-large)- [[19, 22, 25], 1, Detect, [nc]]  # Detect(P3, P4, P5)

五、运行成功记录

 

六、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/216913.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mybatis映射接口的动态代理实现原理

Mybatis映射接口的动态代理实现原理 在上一节中,我们介绍了MyBatis的核心配置文件加载流程,Mybatis核心配置文件加载流程详解 在文中,我们介绍了MyBatis在加载配置文件的过程中会针对每个接口类都生成一个相应的MapperProxyFactory动态代理工…

【上海大学数字逻辑实验报告】六、时序电路

一、 实验目的 掌握同步二进制计数器和移位寄存器的原理。学会用分立元件构成2位同步二进制加计数器。学会在Quartus II上设计单向移位寄存器。学会在Quartus II上设计环形计数器。 二、 实验原理 同步计数器是指计数器中的各触发器的时钟脉冲输入端连接在一起,接…

FL Studio Producer Edition 21.2.2.3914中文汉化破解版新功能介绍及下载安装教程

FL Studio Producer Edition 21.2.2.3914中文汉化破解版 也就是 Image-Line 出品的一款功能强大的编曲软件,全名 Fruity Loops Studio 简称“FL Studio”今天突然的发现我们经常使用的水果音乐制作软件 FL STUDIO 居然从FL STUDIO 21.1.1 一下子跨越了版本号到了FL …

【产品经理】需求池和版本树

在这个人人都是产品经理的时代,每位入行的产品人进阶速度与到达高度各有不同。本文作者结合自身三年产品行业的经历,根据案例拆解产品行业的极简研发过程、需求池、版本树、产品自我优化等相关具体方法论。 一、产品研发的极简过程 1. 产品概述 产品就…

Server check fail, please check server xxx.xxx.xxx.xxx,port 9848 is available

记录一次服务调用中的错误 背景:我使用了nacos2.x的版本,同时在同一台服务器的三个docker容器中部署了nacos1、2、3,并将它们连接到了同一个docker网络 错误:Server check fail, please check server xxx.xxx.xxx.xxx,port 9848 …

C/C++,动态 DP 问题的计算方法与源程序

1 文本格式 #include <bits/stdc.h> using namespace std; typedef long long LL; const int maxn 500010; const int INF 0x3f3f3f3f; int Begin[maxn], Next[maxn], To[maxn], e, n, m; int size[maxn], son[maxn], top[maxn], fa[maxn], dis[maxn], p[maxn], i…

AI PC行业深度研究报告:AI PC革新端侧AI交互体验

今天分享的人工智能系列深度研究报告&#xff1a;《AI PC行业深度研究报告&#xff1a;AI PC革新端侧AI交互体验》。 &#xff08;报告出品方&#xff1a;华创证券&#xff09; 报告共计&#xff1a;28页 点击添加图片描述&#xff08;最多60个字&#xff09;编辑 一、硬件端…

12.字符串拼接【2023.12.4】

1.问题描述 我们在编程过程中经常会遇到把不同字符串拼接在一起的情况&#xff0c;从而更直观地展示给用户我们所要表达的信息。本题将给出两个字符串&#xff0c;请依次将这两个字符串拼接在一起。 2.解决思路 用字符串拼接符 进行连接两个字符串 3.代码实现 str1input(…

XSS漏洞 深度解析 XSS_labs靶场

XSS漏洞 深度解析 XSS_labs靶场 0x01 简介 XSS原名为Cross-site Sciprting(跨站脚本攻击)&#xff0c;因简写与层叠样式表(Cascading style sheets)重名&#xff0c;为了区分所以取名为XSS。 这个漏洞主要存在于HTML页面中进行动态渲染输出的参数中&#xff0c;利用了脚本语…

Apollo配置发布原理解析

&#x1f4eb;作者简介&#xff1a;小明java问道之路&#xff0c;2022年度博客之星全国TOP3&#xff0c;专注于后端、中间件、计算机底层、架构设计演进与稳定性建设优化&#xff0c;文章内容兼具广度、深度、大厂技术方案&#xff0c;对待技术喜欢推理加验证&#xff0c;就职于…

P1单片机定时器配置及定时器中断——C51(超详细)

目录 1. 简介 1.1 概念解读 1.2 定时器怎么定时 1.什么是晶振 2.什么是时钟周期 3.什么是机器周期 4.加1经过了多少时间 1.3 定时器编程 1.如何算出10ms定时器的初值(TL0 TH0) 2.关于TCON ,怎么知道爆表 3.怎么开始计时(TR0) 4.定时器使用是有很多种模式的&#xf…

深入了解基础故障编排:提升系统故障应对能力的关键

在当今高度数字化的世界中&#xff0c;系统的稳定性和可用性对于业务的成功至关重要。然而&#xff0c;在复杂的软件和硬件环境中&#xff0c;故障不可避免地会发生。为了更有效地应对这些故障&#xff0c;基础故障编排成为一项关键的技术。本文将探讨基础故障编排的概念及作用…

「PPT 下载」Google DevFest Keynote | 复杂的海外网络环境下,如何提升连接质量

&#xff08;全网都在找的《社交泛娱乐出海作战地图》&#xff0c;点击获取&#x1f446;&#xff09; 12 月 10 日&#xff0c;“Google DevFest 2023 上海站”大会如期在上海市东方万国宴会中心举办。延续过往的技术交流碰撞、前沿技术学习基调传统&#xff0c;本届大会聚焦行…

基于导数Zernike多项式拟合技术的干涉测量二维相位展开算法(原文翻译)

Zixin Zhao1&#xff0c;Hong Zhao1、Lu Zhang 1&#xff0c;Fen Gao2&#xff0c;Yuwei Qin3&#xff0c;Hubing Du 摘要: 我们提出了一种适用于一般干涉测量应用的相位展开方法。所提出的方法依赖于导数泽尼克多项式拟合&#xff08;DZPF&#xff09;技术&#xff0c;其中相…

淡化了技术指标 还能做现货黄金交易?

技术指标是分析和预测现货黄金走势的其中一种方法&#xff0c;普通投资者多数依赖技术指标为自己的交易做判断。然而&#xff0c;近几年有一种观点认为&#xff0c;我们应该淡化技术指标&#xff0c;少使用或者不用技术分析来服务我们的交易。这个观点引起了不少投资者的思考&a…

现代密码学复习

密码学总结 目录 密码学总结 第一章——只因础模型与概念 1.1 密码学五元组&#xff08;结合&#x1f40f;皮卷&#xff09; 1.2 Dolev-Yao威胁模型 1.3 攻击类型 1.4 柯克霍夫原则&#xff08;Kerckhoffss principle&#xff09; 1.5 对称、非对称加密 1.6 密码的目标…

优雅玩转实验室服务器(二)传输文件

使用服务器最重要的肯定是传输文件了&#xff0c;我们不仅需要本地的一些资源上传到服务器&#xff0c;好进行实验&#xff0c;也需要将服务器计算得到的实验结果传输到本地&#xff0c;来进行预览或者报告撰写。 首先&#xff0c;由于涉及到服务器操作&#xff0c;我强烈推荐…

【FPGA】Verilog:BCD 加法器的实现 | BCD 运算 | Single-level 16 bit 超前进位加法器 | 2-level 16-bit 超前进位加法器

0x00 BCD 运算 在 BCD 中,使用4位值作为操作数,但由于只表示 0 到 9 的数字,因此只使用 0000 到 1001 的二进制数,而不使用 1010 到 1111 的二进制数(dont care)。 因此,不能使用常规的 2complement 运算来计算,需要额外的处理:如果 4 位二进制数的运算结果在 1010 …

C++共享和保护——(1)作用域

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 人生就像骑单车&#xff0c;要想平衡就…

vue项目中 CDN 是vue本身的依赖可以按需加载还是项目中所有的第三方库都可以按需加载?

这是我看到CDN简介时产生的问题 相信很多小伙伴会有 和我一样的疑问 在这里 我也统一回答一下 CDN&#xff08;内容分发网络&#xff09;是一种通过将数据分发到全球各个节点&#xff0c;以提供快速、可靠的内容传输的技术。在Vue项目中&#xff0c;CDN可以用于按需加载Vue本…