【算法专题】分治 - 快速排序

分治 - 快速排序

  • 分治 - 快速排序
    • 1. 颜色分类
    • 2. 排序数组(快速排序)
    • 3. 数组中的第K个最大元素
    • 4. 库存管理Ⅲ
    • 5. 排序数组(归并排序)
    • 6. 交易逆序对的总数
    • 7. 计算右侧小于当前元素的个数
    • 8. 翻转对

分治 - 快速排序

1. 颜色分类

做题链接 -> Leetcode -75.颜色分类

题目:给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。
我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。
必须在不使用库内置的 sort 函数的情况下解决这个问题。

示例 1:
输入:nums = [2, 0, 2, 1, 1, 0]
输出:[0, 0, 1, 1, 2, 2]

示例 2:
输入:nums = [2, 0, 1]
输出:[0, 1, 2]

提示:
n == nums.length
1 <= n <= 300
nums[i] 为 0、1 或 2

思路:快排思想,三指针法使数组分三块。类比数组分两块的算法思想,这里是将数组分成三块,那么我们可以再添加⼀个指针,实现数组分三块。

设数组大小为 n ,定义三个指针 left, cur, right :

  • left :用来标记 0(红色) 序列的末尾,因此初始化为 -1 ;
  • cur :用来扫描数组,初始化为 0 ;
  • right :用来标记 2(蓝色) 序列的起始位置,因此初始化为 n 。

在 cur 往后扫描的过程中,保证:

  • [0, left] 内的元素都是 0(红色) ;
  • [left + 1, cur - 1] 内的元素都是 1(白色) ;
  • [cur, right - 1] 内的元素是待定元素;
  • [right, n] 内的元素都是 2(蓝色) .

代码如下:

		class Solution {public:void sortColors(vector<int>& nums) {// 使用三指针将数组分为三块,最终分为以下三个模块:// [0, left] 表示 0(红色) 序列;// [left + 1, right - 1] 表示 1(白色) 序列;// [right, numsSize - 1] 表示 2(蓝色) 序列。     int cur = 0, left = -1, right = nums.size();while(cur < right){if(nums[cur] == 0) swap(nums[++left], nums[cur++]);else if(nums[cur] == 1) cur++;else swap(nums[--right], nums[cur]);}}};

2. 排序数组(快速排序)

做题链接 -> Leetcode -912.排序数组

题目:给你一个整数数组 nums,请你将该数组升序排列。

示例 1:
输入:nums = [5, 2, 3, 1]
输出:[1, 2, 3, 5]

示例 2:
输入:nums = [5, 1, 1, 2, 0, 0]
输出:[0, 0, 1, 1, 2, 5]

提示:
1 <= nums.length <= 5 * 10^4
5 * 10^4 <= nums[i] <= 5 * 10^4

由于思路比较明显,使用快速选择算法,递归处理选取一个基准值 key 将数组分为三块,下面直接看代码:

		class Solution {public:vector<int> sortArray(vector<int>& nums) {// 种下一个随机数种子srand(time(nullptr));// 快速选择算法,将数组划分为三个区间my_qsort(nums, 0, nums.size() - 1);return nums;}void my_qsort(vector<int>& nums, int l, int r){if(l >= r) return;// 将数组分三块int key = getRandom(nums, l, r);int i = l, left = l - 1, right = r + 1;while(i < right){if(nums[i] > key) swap(nums[i], nums[--right]);else if(nums[i] == key) ++i;else swap(nums[++left], nums[i++]);}// [l, left] [left + 1, right - 1] [right, r]my_qsort(nums, l, left);my_qsort(nums, right, r);}// 获取数组中随机一个数// 让随机数 % 上区间大小,然后加上区间的左边界int getRandom(vector<int>& nums, int left, int right){return nums[rand() % (right - left + 1) + left];}};

3. 数组中的第K个最大元素

题目链接 -> Leetcode -215.数组中的第K个最大元素

Leetcode -215.数组中的第K个最大元素

题目:给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。
请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。

示例 1:
输入: [3, 2, 1, 5, 6, 4] , k = 2
输出 : 5

示例 2 :
输入 : [3, 2, 3, 1, 2, 4, 5, 5, 6] , k = 4
输出 : 4

提示:

  • 1 <= k <= nums.length <= 10^5
  • 10^4 <= nums[i] <= 10^4

思路是使用快排思想,将数组分为三块,然后分三种情况讨论,具体思路参考代码解析;

代码如下:

		class Solution {public:int findKthLargest(vector<int>& nums, int k){srand(time(nullptr));return FindMaxTopk(nums, 0, nums.size() - 1, k);}int FindMaxTopk(vector<int>& nums, int l, int r, int k){if (l == r) return nums[l];// 根据 key 将数组分为三块int key = getRandom(nums, l, r);int i = l, left = l - 1, right = r + 1;while (i < right){if (nums[i] < key) swap(nums[++left], nums[i++]);else if (nums[i] == key) i++;else swap(nums[--right], nums[i]);}// [l, left] [left + 1, right - 1] [right, r]int part2 = right - left - 1, part3 = r - right + 1;// 分情况讨论// 情况1、区间3的个数大于等于k,那么目标值一定在区间3if (part3 >= k) return FindMaxTopk(nums, right, r, k);// 情况2、区间2+区间3的个数大于等于k,目标值一定在区间2,即一定是 keyelse if (part2 + part3 >= k) return key;// 情况3、如果不满足上面情况,则目标值一定在区间1else return FindMaxTopk(nums, l, left, k - part2 - part3);}// 获取数组内的一个随机值int getRandom(vector<int>& nums, int left, int right){return nums[rand() % (right - left + 1) + left];}};

4. 库存管理Ⅲ

题目链接 -> Leetcode -LCR 159.库存管理Ⅲ

Leetcode -LCR 159.库存管理Ⅲ

题目:仓库管理员以数组 stock 形式记录商品库存表,其中 stock[i] 表示对应商品库存余量。
请返回库存余量最少的 cnt 个商品余量,返回 顺序不限。

示例 1:
输入:stock = [2, 5, 7, 4], cnt = 1
输出:[2]

示例 2:
输入:stock = [0, 2, 3, 6], cnt = 2
输出:[0, 2] 或[2, 0]

提示:
0 <= cnt <= stock.length <= 10000
0 <= stock[i] <= 10000

思路:与上题思路类似;在快排中,当我们把数组「分成三块」之后: [l, left] [left + 1, right - 1] [right, r] ,我们可以通过计算每一个区间内元素的「个数」,进而推断出最小的 k 个数在哪些区间里面。那么我们可以直接去「相应的区间」继续划分数组即可。

代码如下:

		class Solution {public:void my_qsort(vector<int>& arr, int l, int r, int k){if(l >= r) return;// 根据 key 值分区间int key = getRandom(arr, l, r);int i = l, left = l - 1, right = r + 1;while(i < right){if(arr[i] < key) swap(arr[++left], arr[i++]);else if(arr[i] == key) i++;else swap(arr[--right], arr[i]);}// 根据元素个数分情况讨论// [l, left] [left + 1][right - 1] [right, r]int part1 = left - l + 1, part2 = right - left - 1;if(part1 >= k) my_qsort(arr, l, left, k);else if(part1 + part2 >= k) return;else my_qsort(arr, right, r, k - part1 - part2);}// 选取基准值int getRandom(vector<int>& arr, int left, int right){return arr[rand() % (right - left + 1) + left];}vector<int> inventoryManagement(vector<int>& stock, int cnt) {srand(time(nullptr));// 快速选择算法,将数组分为三个区间,选择基准值key,比key小的元素全扔到左边my_qsort(stock, 0, stock.size() - 1, cnt);return vector<int>(stock.begin(), stock.begin() + cnt);}};

5. 排序数组(归并排序)

题目链接 -> Leetcode -912.排序数组(归并排序)

Leetcode -912.排序数组(归并排序)

题目:给你一个整数数组 nums,请你将该数组升序排列。

示例 1:
输入:nums = [5, 2, 3, 1]
输出:[1, 2, 3, 5]

示例 2:
输入:nums = [5, 1, 1, 2, 0, 0]
输出:[0, 0, 1, 1, 2, 5]

提示:

  • 1 <= nums.length <= 5 * 10^4
  • 5 * 10^4 <= nums[i] <= 5 * 10^4

思路:归并排序的流程充分的体现了「分而治之」的思想,大体过程分为两步:

  • 分:将数组一分为二为两部分,一直分解到数组的长度为 1 ,使整个数组的排序过程被分为「左半部分排序」 + 「右半部分排序」;
  • 治:将两个较短的「有序数组合并成⼀个长的有序数组」,一直合并到最初的长度

代码如下:

		class Solution{vector<int> tmp;public:vector<int> sortArray(vector<int>& nums){tmp.resize(nums.size());mergeSort(nums, 0, nums.size() - 1);return nums;}void mergeSort(vector<int>& nums, int left, int right){if (left >= right) return;int mid = left + (right - left) / 2;// [left, mid] [mid + 1, right]mergeSort(nums, left, mid);mergeSort(nums, mid + 1, right);// 合并两个区间// vector<int> tmp(right - left + 1);  // 可以在全局定义,提高效率int i = 0, cur1 = left, cur2 = mid + 1;while (cur1 <= mid && cur2 <= right)tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur1++] : nums[cur2++];while (cur1 <= mid) tmp[i++] = nums[cur1++];while (cur2 <= right) tmp[i++] = nums[cur2++];// 更新原数组for (int i = left; i <= right; i++)nums[i] = tmp[i - left];}};

6. 交易逆序对的总数

题目链接 -> Leetcode -LCR 170.交易逆序对的总数

Leetcode -LCR 170.交易逆序对的总数

题目:在股票交易中,如果前一天的股价高于后一天的股价,则可以认为存在一个「交易逆序对」。请设计一个程序,输入一段时间内的股票交易记录 record,返回其中存在的「交易逆序对」总数。

示例 1:
输入:record = [9, 7, 5, 4, 6]
输出:8
解释:交易中的逆序对为(9, 7), (9, 5), (9, 4), (9, 6), (7, 5), (7, 4), (7, 6), (5, 4)。

限制:

  • 0 <= record.length <= 50000

思路:用归并排序求逆序数,主要就是在归并排序的合并过程中统计出逆序对的数量,也就是在合并两个有序序列的过程中,能够快速求出逆序对的数量。

1. 为什么可以利用归并排序?

如果我们将数组从中间划分成两个部分,那么我们可以将逆序对产生的方式划分成三组:

  • 逆序对中两个元素:全部从左数组中选择
  • 逆序对中两个元素:全部从右数组中选择
  • 逆序对中两个元素:一个选左数组另一个选右数组

根据排列组合的分类相加原理,三种情况下产生的逆序对的总和,正好等于总的逆序对数量。

而这个思路正好匹配归并排序的过程:

  • 先排序左数组;
  • 再排序右数组;
  • 左数组和右数组合⼆为一;

因此,我们可以利用归并排序的过程,先求出左半数组中逆序对的数量,再求出右半数组中逆序对的数量,最后求出一个选择左边,另一个选择右边情况下逆序对的数量,三者相加即可。

2. 为什么要这么做?

在归并排序合并的过程中,我们得到的是两个有序的数组。我们是可以利用数组的有序性,快速统计出逆序对的数量,而不是将所有情况都枚举出来。

最核心的问题,如何在合并两个有序数组的过程中,统计出逆序对的数量?合并两个有序序列时求逆序对的方法有两种:

  1. 快速统计出某个数前面有多少个数比它大;
  2. 快速统计出某个数后面有多少个数比它小;

代码如下:

		class Solution{vector<int> tmp;public:int reversePairs(vector<int>& nums){tmp.resize(nums.size());return mergeSort(nums, 0, nums.size() - 1);}int mergeSort(vector<int>& nums, int left, int right){if (left >= right) return 0;// [left, mid] [mid + 1, right]int mid = left + (right - left) / 2;// 先统计两个区间各自的逆序对个数 + 排序int ret = 0;ret += mergeSort(nums, left, mid);ret += mergeSort(nums, mid + 1, right);// 两个区间每个区间选一个进行比较,因为比较时区间已经排序好,所以当cur1中出现第一次比cur2大的数时,cur1 后面的数都可以全部统计int cur1 = left, cur2 = mid + 1, i = 0;while (cur1 <= mid && cur2 <= right){if (nums[cur1] > nums[cur2]) ret += mid - cur1 + 1;tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur1++] : nums[cur2++];}// 处理细节,还没结束的指针后的数全放入tmp中while (cur1 <= mid) tmp[i++] = nums[cur1++];while (cur2 <= right) tmp[i++] = nums[cur2++];// 拷贝回原数组for (int i = left; i <= right; i++) nums[i] = tmp[i - left];return ret;}};

7. 计算右侧小于当前元素的个数

题目链接 -> Leetcode -315.计算右侧小于当前元素的个数

Leetcode -315.计算右侧小于当前元素的个数

题目:给你一个整数数组 nums ,按要求返回一个新数组 counts 。数组 counts 有该性质: counts[i] 的值是 nums[i] 右侧小于 nums[i] 的元素的数量。

示例 1:
输入:nums = [5, 2, 6, 1]
输出:[2, 1, 1, 0]
解释:
5 的右侧有 2 个更小的元素(2 和 1)
2 的右侧仅有 1 个更小的元素(1)
6 的右侧有 1 个更小的元素(1)
1 的右侧有 0 个更小的元素

示例 2:
输入:nums = [-1]
输出:[0]

示例 3:
输入:nums = [-1, -1]
输出:[0, 0]

提示:

  • 1 <= nums.length <= 10^5
  • 10^4 <= nums[i] <= 10^4

思路:这一道题的解法与上一题的解法是类似的,但是这一道题要求的不是求总的个数,而是要返回一个数组,记录每一个元素的右边有多少个元素比自己小。

但是在我们归并排序的过程中,元素的下标是会跟着变化的,因此我们需要一个辅助数组,来将数组元素和对应的下标绑定在一起归并,也就是再归并元素的时候,顺势将下标也转移到对应的位置上。

代码如下:

		class Solution {// 将原数组的元素和下标绑定在一起,元素顺序改变时,对应的下标也跟着改变vector<int> tmpElement, tmpIndex;vector<int> index;vector<int> ret;public:vector<int> countSmaller(vector<int>& nums) {ret.resize(nums.size());index.resize(nums.size());// 初始化下标for(int i = 0; i < nums.size(); i++)index[i] = i;tmpElement.resize(nums.size());tmpIndex.resize(nums.size());mergeSort(nums, 0, nums.size() - 1);return ret;}void mergeSort(vector<int>& nums, int left, int right){if(left >= right) return;int mid = left + (right - left) / 2;// [left, mid] [mid + 1, right]mergeSort(nums, left, mid);mergeSort(nums, mid + 1, right);int cur1 = left, cur2 = mid + 1, i = 0;while(cur1 <= mid && cur2 <= right){// index[cur1] 存的是 nums[cur1] 这个元素的原始下标if(nums[cur1] > nums[cur2]) ret[index[cur1]] += right - cur2 + 1;// 同步更新下标和元素tmpIndex[i] = nums[cur1] > nums[cur2]? index[cur1] : index[cur2];tmpElement[i++] = nums[cur1] > nums[cur2]? nums[cur1++] : nums[cur2++];}while(cur1 <= mid){tmpIndex[i] = index[cur1];tmpElement[i++] = nums[cur1++];}while(cur2 <= right){tmpIndex[i] = index[cur2];tmpElement[i++] = nums[cur2++];}// 同步拷贝下标和元素for(int j = left; j <= right; j++){index[j] = tmpIndex[j - left];nums[j] = tmpElement[j - left];}}};

8. 翻转对

题目链接 -> Leetcode -493.翻转对

Leetcode -493.翻转对

题目:给定一个数组 nums ,如果 i < j 且 nums[i] > 2 * nums[j] 我们就将(i, j) 称作一个重要翻转对。
你需要返回给定数组中的重要翻转对的数量。

示例 1:
输入: [1, 3, 2, 3, 1]
输出 : 2

示例 2 :
输入 : [2, 4, 3, 5, 1]
输出 : 3

注意 :
给定数组的长度不会超过50000。
输入数组中的所有数字都在32位整数的表示范围内。

思路:翻转对和逆序对的定义大同小异,逆序对是前面的数要大于后面的数。而翻转对是前面的⼀个数要大于后面某个数的两倍。因此,我们依旧可以用归并排序的思想来解决这个问题。

大思路与求逆序对的思路一样,就是利用归并排序的思想,将求整个数组的翻转对的数量,转换成三部分:左半区间翻转对的数量,右半区间翻转对的数量,一左一右选择时翻转对的数量。重点就是在合并区间过程中,如何计算出翻转对的数量。

例如 left = [4, 5, 6] right = [3, 4, 5] 时,如果是归并排序的话,我们需要计算 left 数组中有多少个能与 3 组成翻转对。但是我们要遍历到最后⼀个元素 6 才能确定,时间复杂度较高。因此我们需要在归并排序之前完成翻转对的统计。

下面以⼀个示例来模仿两个有序序列如何快速求出翻转对的过程:假定已经有两个已经有序的序列 left = [4, 5, 6] right = [1, 2, 3] ;用两个指针 cur1 和 cur2 遍历两个数组

  • 对于任意给定的 left[cur1] 而言,我们不断地向右移动 cur2,直到 left[cur1] <= 2 * right[cur2]。此时对于 right 数组而言,cur2 之前的元素全部都可以与 left[cur1] 构成翻转对。
  • 随后,我们再将 cur1 向右移动⼀个单位,此时 cur2 指针并不需要回退(因为 left 数组是升序的)依旧往右移动直到 left[cur1] <= 2 * right[cur2]。不断重复这样的过程,就能够求出所有左右端点分别位于两个子数组的翻转对数目。

由于两个指针最后都是不回退的的扫描到数组的结尾,因此两个有序序列求出翻转对的时间复杂度是 O(N).

综上所述,我们可以利用归并排序的过程,将求一个数组的翻转对转换成求左数组的翻转对数量 + 右数组中翻转对的数量 + 左右数组合并时翻转对的数量。

代码如下:

		class Solution {vector<int> tmp;public:int reversePairs(vector<int>& nums) {      tmp.resize(nums.size());return mergeSort(nums, 0, nums.size() - 1);}int mergeSort(vector<int>& nums, int left, int right){if(left >= right) return 0;// 1.根据中间元素划分区间int mid = left + (right - left) / 2;// 2. 先计算左右区间的翻转对// [left, mid] [mid + 1, right]int ret = 0;ret += mergeSort(nums, left, mid);ret += mergeSort(nums, mid + 1, right);// 3.先利用左右区间有序的性质计算翻转对的数量int cur1 = left, cur2 = mid + 1, i = 0;while(cur1 <= mid){while(cur2 <= right && nums[cur2] >= nums[cur1] / 2.0) cur2++;ret += right - cur2 + 1;cur1++;}// 4.合并归并区间cur1 = left, cur2 = mid + 1;while(cur1 <= mid && cur2 <= right)tmp[i++] = nums[cur2] > nums[cur1]? nums[cur2++] : nums[cur1++];while(cur1 <= mid) tmp[i++] = nums[cur1++];while(cur2 <= right) tmp[i++] = nums[cur2++];for(int j = left; j <= right; j++)nums[j] = tmp[j - left];return ret;}};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/214463.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【华为数据之道学习笔记】3-5 规则数据治理

在业务规则管理方面&#xff0c;华为经常面对“各种业务场景业务规则不同&#xff0c;记不住&#xff0c;找不到”“大量规则在政策、流程等文件中承载&#xff0c;难以遵守”“各国规则均不同&#xff0c;IT能否一国一策、快速上线”等问题。 规则数据是结构化描述业务规则变量…

【Qt开发流程】之UI风格、预览及QPalette使用

概述 一个优秀的应用程序不仅要有实用的功能&#xff0c;还要有一个漂亮美腻的外观&#xff0c;这样才能使应用程序更加友善、操作性良好&#xff0c;更加符合人体工程学。作为一个跨平台的UI开发框架&#xff0c;Qt提供了强大而且灵活的界面外观设计机制&#xff0c;能够帮助…

利用Rclone将阿里云对象存储迁移至雨云对象存储的教程,对象存储数据迁移教程

使用Rclone将阿里云对象存储(OSS)的文件全部迁移至雨云对象存储(ROS)的教程&#xff0c;其他的对象存储也可以参照本教程。 Rclone简介 Rclone 是一个用于和同步云平台同步文件和目录命令行工具。采用 Go 语言开发。 它允许在文件系统和云存储服务之间或在多个云存储服务之间…

STM32-EXTI外部中断

目录 一、中断系统 二、STM32中断 三、NVIC&#xff08;嵌套中断向量控制器&#xff09;基本结构 四、NVIC优先级分组 五、EXTI外部中断 5.1 外部中断基本知识 5.2 外部中断&#xff08;EXTI&#xff09;基本结构 ​编辑 5.2.1开发步骤&#xff1a; 5.3 AFIO复用IO口…

ADAudit Plus:强大的网络安全卫士

随着数字化时代的不断发展&#xff0c;企业面临着越来越复杂和多样化的网络安全威胁。在这个信息爆炸的时代&#xff0c;保护组织的敏感信息和确保网络安全已经成为企业发展不可或缺的一环。为了更好地管理和监控网络安全&#xff0c;ADAudit Plus应运而生&#xff0c;成为网络…

ThreadLocal系列-ThreadLocalMap源码

1.ThreadLocalMap.Entry key&#xff1a;指向key的是弱引用 value&#xff1a;强引用 public class ThreadLocal<T> {static class ThreadLocalMap {/*** The entries in this hash map extend WeakReference, using* its main ref field as the key (which is always…

32、卷积参数 - 长宽方向的公式推导

有了前面三节的卷积基础 padding, stride, dilation 之后,大概就可以了解一个卷积算法的全貌了。 一个完整的卷积包含的输入和输出有: 输入图像,表示为[n, hi, wi, ci] 卷积核,表示为[co, kh, kw, ci] 输出特征图,表示为[n, ho, wo, co] 以上为卷积算法的两个输入 tensor…

【持更】python数据处理-学习笔记

1、读取excel /csv及指定sheet&#xff1a; pd.read_excel("路径",sheetname"xx") 修改列名df.rename 修改字符串类型到数字 pandas.to_numeric&#xff08;&#xff09; 2、删除drop、去重drop_duplicates &#xff08;1&#xff09;空值所在行/列 行&am…

Redis分布式锁有什么缺陷?

Redis分布式锁有什么缺陷&#xff1f; Redis 分布式锁不能解决超时的问题&#xff0c;分布式锁有一个超时时间&#xff0c;程序的执行如果超出了锁的超时时间就会出现问题。 1.Redis容易产生的几个问题&#xff1a; 2.锁未被释放 3.B锁被A锁释放了 4.数据库事务超时 5.锁过期了…

centos 7 卸载图形化界面步骤记录

centos7 服务器操作系统&#xff0c;挺小一配置&#xff0c;装了图形化界面&#xff0c;现在运行程序的时候跑不动了&#xff0c;我想这图形界面也没啥用&#xff0c;卸载了算了&#xff01; 卸载步骤 yum grouplist 查询已经安装的组件 可以看到 图形化界面 等是以分组存在的…

深入理解Spring IOC的工作流程

理解Spring IOC&#xff08;Inversion of Control&#xff09;的工作流程是理解Spring框架的核心之一。下面是Spring IOC的基本工作流程&#xff1a; 配置&#xff1a; 开发者通过XML配置文件、Java配置类或者注解等方式&#xff0c;定义应用中的Bean以及它们之间的依赖关系。这…

TCP数据粘包的处理

TCP数据粘包的处理 背锅侠TCP解决方案2.1 发送端2.2 接收端 背锅侠TCP 在前面介绍套接字通信的时候说到了TCP是传输层协议&#xff0c;它是一个面向连接的、安全的、流式传输协议。因为数据的传输是基于流的所以发送端和接收端每次处理的数据的量&#xff0c;处理数据的频率可…

Qt练习题

1.使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中&#xff0c;在槽函数中判断ui界面上输入的账号是否为"admin"&#xff0c;密码是否…

代码随想录 96. 不同的二叉搜索树

题目 给你一个整数 n &#xff0c;求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种&#xff1f;返回满足题意的二叉搜索树的种数。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;5 示例 2&#xff1a; 输入&#xff1a;n 1 输出&#xff1…

【Angular开发】Angular 16发布:发现前7大功能

Angular 于2023年5月3日发布了主要版本升级版Angular 16。作为一名Angular开发人员&#xff0c;我发现这次升级很有趣&#xff0c;因为与以前的版本相比有一些显著的改进。 因此&#xff0c;在本文中&#xff0c;我将讨论Angular 16的前7个特性&#xff0c;以便您更好地理解。…

机器学习基础介绍

百度百科&#xff1a; 机器学习是一门多领域交叉学科&#xff0c;涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为&#xff0c;以获取新的知识或技能&#xff0c;重新组织已有的知识结构使之不断改善自身的性能。 …

手工酸奶店如何选址?开在哪里比较合适?

手工酸奶店是一个非常受欢迎的创业项目&#xff0c;但想要成功开店&#xff0c;选址是非常重要的。 本人开酸奶店5年时间&#xff0c;下面我将为大家分享一些选址的小技巧&#xff0c;希望对大家有所帮助。&#xff08;可以点赞收藏&#xff0c;方便以后随时查阅&#xff09; …

入职字节外包一个月,我离职了。。。

有一种打工人的羡慕&#xff0c;叫做“大厂”。 真是年少不知大厂香&#xff0c;错把青春插稻秧。 但是&#xff0c;在深圳有一群比大厂员工更庞大的群体&#xff0c;他们顶着大厂的“名”&#xff0c;做着大厂的工作&#xff0c;还可以享受大厂的伙食&#xff0c;却没有大厂…

12.11 C++ 作业

完善对话框&#xff0c;点击登录对话框&#xff0c;如果账号和密码匹配&#xff0c;则弹出信息对话框&#xff0c;给出提示”登录成功“&#xff0c;提供一个Ok按钮&#xff0c;用户点击Ok后&#xff0c;关闭登录界面&#xff0c;跳转到其他界面 如果账号和密码不匹配&#xf…

树根研习社|数据为王,洞察“工业数据采集”背后的价值与实践

一、工业数据采集是什么&#xff1f; 数据采集是将各种信息传感设备通过网络结合起来&#xff0c;实现任何时间、任何地点&#xff0c;人、机、物的互联互通。数据采集的主要的作用是&#xff1a; “翻译官”&#xff1a;不同程序语言的设备数据通过协议解析“翻译”为上层系…