【算法优选】 动态规划之路径问题——贰

文章目录

  • 🎋前言
  • 🌲[下降最小路径和](https://leetcode.cn/problems/minimum-path-sum/)
    • 🚩题目描述
    • 🚩算法思路:
    • 🚩代码实现
  • 🎍[最小路径和](https://leetcode.cn/problems/minimum-path-sum/)
    • 🚩算法思路
    • 🚩代码实现
  • 🌴[地下城游戏](https://leetcode.cn/problems/dungeon-game/)
    • 🚩题目描述
    • 🚩算法思路
    • 🚩代码实现
  • ⭕总结

🎋前言

动态规划相关题目都可以参考以下五个步骤进行解答:

  1. 状态表⽰

  2. 状态转移⽅程

  3. 初始化

  4. 填表顺序

  5. 返回值

后面题的解答思路也将按照这五个步骤进行讲解。

🌲下降最小路径和

🚩题目描述

给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

  • 示例 1:

在这里插入图片描述
输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

  • 示例 2:

在这里插入图片描述
输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

class Solution {public int minFallingPathSum(int[][] matrix) {}
}

🚩算法思路:

关于这⼀类题,由于我们做过类似的,因此「状态表⽰」以及「状态转移」是⽐较容易分析出来的。
⽐较难的地⽅可能就是对于「边界条件」的处理。

  1. 状态表⽰:
    对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
    • 从 [i, j] 位置出发,到达⽬标位置有多少种⽅式;
    • 从起始位置出发,到达 [i, j] 位置,⼀共有多少种⽅式

这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:到达 [i, j] 位置时,所有下降路径中的最⼩和。

  1. 状态转移⽅程:
    对于普遍位置 [i, j] ,根据题意得,到达 [i, j] 位置可能有三种情况:
    • 从正上⽅ [i - 1, j] 位置转移到 [i, j] 位置;
    • 从左上⽅ [i - 1, j - 1] 位置转移到 [i, j] 位置;
    • 从右上⽅ [i - 1, j + 1] 位置转移到 [i, j] 位置;

我们要的是三种情况下的「最⼩值」,然后再加上矩阵在 [i, j] 位置的值。于是 dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j +1])) + matrix[i][j] 。

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,需要「加上⼀⾏」,并且「加上两列」。所有的位置都初始化为⽆穷⼤,然后将第⼀⾏初始化为0 即可。

  1. 填表顺序:
    根据「状态表⽰」,填表的顺序是「从上往下」。

  2. 返回值:
    注意这⾥不是返回 dp[m][n] 的值!

题⽬要求「只要到达最后⼀⾏」就⾏了,因此这⾥应该返回「dp表中最后⼀⾏的最⼩值」。

🚩代码实现

class Solution {public int minFallingPathSum(int[][] matrix) {// 1. 创建 dp 表// 2. 初始化// 3. 填表// 4. 返回结果int n = matrix.length;int[][] dp = new int[n + 1][n + 2];for(int i = 1; i <= n; i++) {dp[i][0] = dp[i][n + 1] = Integer.MAX_VALUE;}for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++) {dp[i][j] = Math.min(dp[i - 1][j], Math.min(dp[i - 1][j - 1],dp[i - 1][j + 1])) + matrix[i - 1][j - 1];}}int ret = Integer.MAX_VALUE;for(int j = 1; j <= n; j++) {ret = Math.min(ret, dp[n][j]);}return ret;}
}

🎍最小路径和

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

  • 示例 1:
    在这里插入图片描述
    输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
    输出:7
    解释:因为路径 1→3→1→1→1 的总和最小。

  • 示例 2:
    输入:grid = [[1,2,3],[4,5,6]]
    输出:12

class Solution {public int minPathSum(int[][] grid) {}
}

🚩算法思路

像这种表格形式的动态规划,是⾮常容易得到「状态表⽰」以及「状态转移⽅程」的,可以归结到「不同路径」⼀类的题⾥⾯。

  1. 状态表⽰:
    对于这种路径类的问题,我们的状态表⽰⼀般有两种形式:
    • 从 [i, j] 位置出发,一系列操作;
    • 从起始位置出发,到达 [i, j] 位置,一系列操作。

这⾥选择第⼆种定义状态表⽰的⽅式:dp[i][j] 表⽰:到达 [i, j] 位置处,最⼩路径和是多少。

  1. 状态转移:
    简单分析⼀下。如果 dp[i][j] 表⽰到达到达 [i, j] 位置处的最⼩路径和,那么到达[i, j] 位置之前的⼀⼩步,有两种情况:
    • 从 [i - 1, j] 向下⾛⼀步,转移到 [i, j] 位置;
    • 从 [i, j - 1] 向右⾛⼀步,转移到 [i, j] 位置。

由于到 [i, j] 位置两种情况,并且我们要找的是最⼩路径,因此只需要这两种情况下的最⼩值,再加上 [i, j] 位置上本⾝的值即可。也就是: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有位置的值可以初始化为⽆穷⼤,然后让dp[0][1] = dp[1][0] = 1 即可。

  1. 填表顺序:
    根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往后」。

  2. 返回值:
    根据「状态表⽰」,我们要返回的结果是 dp[m][n]

🚩代码实现

class Solution {public int minPathSum(int[][] grid) {// 1. 创建 dp 表// 2. 初始化// 3. 填表// 4. 返回值int m = grid.length;int n = grid[0].length;int[][] dp = new int[m + 1][n + 1];for(int j = 0; j <= n; j++)  {dp[0][j] = Integer.MAX_VALUE;}for(int i = 0; i <= m; i++) {dp[i][0] = Integer.MAX_VALUE;}dp[0][1] = dp[1][0] = 0;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++) {dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j-1];}}return dp[m][n];}
}

🌴地下城游戏

🚩题目描述

恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。

返回确保骑士能够拯救到公主所需的最低初始健康点数。

注意:任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

  • 示例 1:
    在这里插入图片描述
    输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
    输出:7
    解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。

  • 示例 2:
    输入:dungeon = [[0]]
    输出:1

class Solution {public int calculateMinimumHP(int[][] dungeon) {}
}

🚩算法思路

  1. 状态表⽰:

这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后⾯的路径的影响。也就是从上往下的状态转移不能很好地解决问题。

这个时候我们要换⼀种状态表⽰:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。

综上所述,定义状态表⽰为:
dp[i][j] 表⽰:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。

  1. 状态转移⽅程:
    对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择(为了⽅便理解,设 dp[i] [j] 的最终答案是 x ):
    • ⾛到右边,然后⾛向终点
      那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j] ;
    • ⾛到下边,然后⾛向终点
      那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j] ;

综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]

但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j] 如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取⼀个最⼤值即可:dp[i][j] = max(1, dp[i][j])

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,在 dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让dp[m][n - 1] = dp[m - 1][n] = 1 即可。

  1. 填表顺序:
    根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。

  2. 返回值:
    根据「状态表⽰」,我们需要返回 dp[0][0] 的值

🚩代码实现

class Solution {public int calculateMinimumHP(int[][] d) {// 1. 创建 dp 表// 2. 初始化// 3. 填表// 4. 返回值int m = d.length;int n = d[0].length;int[][] dp = new int[m + 1][n + 1];for(int j = 0; j <= n; j++) {dp[m][j] = Integer.MAX_VALUE;}for(int i = 0; i <= m; i++) {dp[i][n] = Integer.MAX_VALUE;}dp[m][n - 1] = dp[m - 1][n] = 1;for(int i = m - 1; i >= 0; i--) {for(int j = n - 1; j >= 0; j--) {dp[i][j] = Math.min(dp[i][j + 1], dp[i + 1][j]) - d[i][j];dp[i][j] = Math.max(dp[i][j], 1);}}return dp[0][0];}
}

⭕总结

关于《【算法优选】 动态规划之路径问题——贰》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/214390.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

viple与物理机器人(一):线控模拟

为了检测viple程序与物理机器人是否能顺利连接上 如果能顺利连接上&#xff0c;那么&#xff0c;可以通过内建事件从而控制物理机器人的前进、后退、左转、右转以及暂停。 如果不能连接上&#xff0c;首先&#xff0c;程序无法控制物理机器人&#xff0c;其次&#xff0c;当vip…

公交站间的距离

&#x1f388; 算法并不一定都是很难的题目&#xff0c;也有很多只是一些代码技巧&#xff0c;多进行一些算法题目的练习&#xff0c;可以帮助我们开阔解题思路&#xff0c;提升我们的逻辑思维能力&#xff0c;也可以将一些算法思维结合到业务代码的编写思考中。简而言之&#…

我的 CSDN 三周年创作纪念日:2020-12-12

本人大叔一枚&#xff0c;自1992年接触电脑&#xff0c;持续了30年的业余电脑发烧爱好者&#xff0c;2022年CSDN博客之星Top58&#xff0c;阿里云社区“乘风者计划”专家博主。自某不知名财校毕业后进入国有大行工作至今&#xff0c;先后任职于某分行信息科技部、电子银行部、金…

扔掉xshell,基于 QT 实现一个串口命令行工具(带源码)

背景 xshell 带有支持串口的命令行能力&#xff0c; 可以方便的和下位机用命令进行交互&#xff0c;如下图所示&#xff1a; msh > msh > msh >version\ | / - RT - Thread Operating System/ | \ 3.1.3 build Nov 7 20232006 - 2019 Copyright by rt-thre…

this.$emit(‘update:isVisible‘, false)作用

这个写是不是很新颖&#xff0c;传父组件传值&#xff01;这是什么鬼。。。 假设你有以下逻辑业务。在A页面弹出一个组件B&#xff0c;A组件里面使用B组件&#xff0c;是否展示B组件你使用的是baselineShow变量控制&#xff01; <BaselineData :isVisible.sync"basel…

如何在Word中简洁地插入代码

如何在Word中简洁地插入代码 背景&#xff1a; ​ 最近在一写一些论文或者报告的时候&#xff0c;需要将源代码放在论文的最后&#xff0c;有一个很头疼的问题&#xff0c;如果直接把代码从编辑器复制到word中&#xff0c;就变成了下面这个样子&#xff1a; 这有点丑陋啊&…

Qt简介、C++工程文件分离、创建Qt工程、Qt的帮助文档

QT 简介 core&#xff1a;核心模块&#xff0c;非图形的接口类&#xff0c;为其它模块提供支持 gui&#xff1a;图形用户接口&#xff0c;qt5之前 widgets&#xff1a;图形界面相关的类模块 qt5之后的 database&#xff1a;数据库模块 network&#xff1a;网络模块 QT 特性 开…

Linux系统的各项命令

文章目录 Linux系统的目录结构Linux路径的描述方式Linux命令入门**什么是命令、命令行**Linux命令基础格式 ls命令入门HOME目录和工作目录ls命令的参数和选项ls命令的 -a选项ls命令的 -l选项ls命令选项的组合使用ls选项和参数的组合使用ls命令的 -h选项 目录切换相关命令&#…

多线程案例-阻塞队列

阻塞队列是什么 阻塞队列是一种特殊的队列.也遵循"先进先出"的原则 阻塞队列能是一种线程安全的数据结构,并且具有以下特性: 当队列满的时候,继续入队列就会阻塞,直到有其他线程从队列中取走元素. 当队列空的时候,继续出队列也会阻塞,直到有其他线程往队列中插入元素…

这七款网工在线画拓扑工具,绝了!

你们好&#xff0c;我的网工朋友。 画拓扑图&#xff0c;绝对是网络工程师的基操。 上次给你来了篇手把手教你绘制拓扑图的好文&#xff0c;还没看过的先去看啊&#xff1a;《网络拓扑图怎么画最好&#xff1f;》。 关于画拓扑的工具&#xff0c;那就多了&#xff0c;直接用…

数据结构与算法-D8D9队列实现及应用

队列&#xff1a;限制在两端进行插入和删除的线性表 允许进行存入操作的一端为“队尾” 允许进行删除操作的一端为“队头” 顺序队列 注意&#xff1a;front指向队头元素的位置 rear指向队尾元素的下一个位置 实现循环队列&#xff1a;(rear1)%N取余&#xff0c;为了区分空…

Connection refused: no further information

解决目录 一、报错信息二、解决方法 一、报错信息 二、解决方法 1、报错原因是开启了代理&#xff0c;像AS是绝对不能开代理的。 2、设置为No proxy&#xff0c;然后Apply再选择OK&#xff0c;重新同步。 要远离消耗你的人和事&#xff0c;不要花费任何情绪或者精力在他们身…

Linux网络——高级IO

目录 一.五种IO模型 1.阻塞式IO 2.非阻塞式IO 3.信号驱动IO 4.多路转接IO&#xff1a; 5.异步IO 二.同步通信 vs 异步通信 三.设置非阻塞IO 1.阻塞 vs 非阻塞 2.非阻塞IO 3.实现函数SetNoBlock 四.I/O多路转接之select 1.初识select 2.select函数原型 3.socket就绪…

UEFI下Windows10和Ubuntu22.04双系统安装图解

目录 简介制作U盘启动盘并从U盘启动电脑安装系统安装Windows系统安装Ubuntu 附录双系统时间不一致 简介 传统 Legacy BIOS主板下的操作系统安装可参考本人博客 U盘系统盘制作与系统安装&#xff08;详细图解&#xff09; &#xff0c;本文介绍UEFI主板下的双系统安装&#xff…

解决 Element-ui中 表格(Table)使用 v-if 条件切换后,表格的列的筛选不显示了

解决方法 在每个需要使用 v-if 或 v-else 的 el-table-column 上增加 key 作为唯一标识&#xff0c;这样渲染的时候就不会因为复用原则导致列数据混乱了。关于key值&#xff0c;一般习惯使用字段名&#xff0c;也可随机生成一个值&#xff0c;只要具有唯一性就可以。

Java王者荣耀火柴人

主要功能 键盘W,A,S,D键&#xff1a;控制玩家上下左右移动。按钮一&#xff1a;控制英雄发射一个矩形攻击红方小兵。按钮控制英雄发射魅惑技能&#xff0c;伤害小兵并让小兵停止移动。技能三&#xff1a;攻击多个敌人并让小兵停止移动。普攻&#xff1a;对小兵造成基础伤害。小…

nginx配置自动压缩-gzip压缩

1.nginx配置文件 server里添加gzip配置信息。 重启nginx服务 对比效果&#xff1a;上图是没有开启gzip自动压缩&#xff0c;总共资源是1.3M&#xff0c;传输1.3MB&#xff0c;下图是开启gzip压缩&#xff0c;总共资源是1.3M&#xff0c;传输了973KB。

Axure简单安装与入门

目录 一.Axure简介 二.应用场景 三.安装与汉化 3.1.安装 3.2.汉化 四. 入门 4.1.复制、剪切及粘贴区域 4.2.选择模式 4.3. 插入形状 4.4.预览、共享 感谢大家观看&#xff01;希望能帮到你哦&#xff01;&#xff01;&#xff01; 一.Axure简介 Axure RP是一款专业的原型…

HarmonyOS4.0从零开始的开发教程10管理组件状态

HarmonyOS&#xff08;八&#xff09;管理组件状态 概述 在应用中&#xff0c;界面通常都是动态的。如图1所示&#xff0c;在子目标列表中&#xff0c;当用户点击目标一&#xff0c;目标一会呈现展开状态&#xff0c;再次点击目标一&#xff0c;目标一呈现收起状态。界面会根…