计算机视觉之手势、面部、姿势捕捉以Python Mediapipe为工具

计算机视觉之手势、面部、姿势捕捉以 Python Mediapipe为工具

文章目录

  • 1.`Mediapipe`库概述
  • 2.手势捕捉(`hands`)
  • 3.面部捕捉(`face`)
  • 4.姿势捕捉(`pose`)

1.Mediapipe库概述

Mediapipe是一个开源且强大的Python库,由Google开发和维护。它提供了丰富的工具和功能,用于处理实时多媒体数据。它可以帮助开发者快速构建各种视觉和音频处理应用,并允许他们灵活地定制和扩展库的功能。

Mediapipe库的主要功能包括:

  1. 视觉处理:Mediapipe可以进行人脸检测、姿势估计、手部跟踪等。它通过使用预训练的模型和算法来分析图像或视频,并提供相应的结果。这使得开发者能够轻松地实现各种视觉处理任务。
  2. 音频处理:Mediapipe还可以进行音频信号的处理,例如语音识别、音频增强、语音转换等。它提供了一些内置的音频处理模块,开发者可以使用这些模块来快速构建自己的音频处理流水线。
  3. 数据流处理:Mediapipe库还提供了一套用于处理数据流的工具。开发者可以使用这些工具来构建复杂的数据处理流程,包括数据的输入、输出、转换和合并等。这使得开发者能够更方便地处理实时多媒体数据流。

本期博客,作者将分享使用Mediapipe库实现手势、面部、动作识别的方法。
    在这里插入图片描述


2.手势捕捉(hands)

该段代码使用OpenCVMediaPipe库来检测摄像头视频中的手部,并在图像上绘制关键点和连接线。

import cv2
import time
import mediapipe as mpcapture = cv2.VideoCapture(0)
mpHands = mp.solutions.hands
hands = mpHands.Hands()
mpDraw = mp.solutions.drawing_utils
pTime = 0
cTime = 0while (capture.isOpened()):retval, img = capture.read()imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)results = hands.process(imgRGB)if results.multi_hand_landmarks:for handLms in results.multi_hand_landmarks:for id, lm in enumerate(handLms.landmark):h, w, c = img.shapecx, cy = int(lm.x * w), int(lm.y * h)cv2.circle(img, (cx, cy), 15, (0, 255, 0), cv2.FILLED)mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)cTime = time.time()fps = 1 / (cTime - pTime)pTime = cTimecv2.putText(img, "fps:"+str(int(fps)), (10, 70), cv2.FONT_HERSHEY_PLAIN, 2,(0, 0, 255), 2)cv2.imshow("Video", img) key = cv2.waitKey(1)if key == 32:breakcapture.release()
cv2.destroyAllWindows()

效果展示:
      在这里插入图片描述


关于代码,具体解释如下:

  1. 导入所需的库:

    • cv2:用于处理图像和视频的OpenCV库。
    • time:用于计算帧率的Python标准库。
    • mediapipe as mp:MediaPipe库,用于手部检测和姿态估计。
  2. 创建视频捕获对象:

    • 使用cv2.VideoCapture(0)创建一个视频捕获对象,参数0表示使用默认摄像头。
  3. 初始化MediaPipe手部检测器:

    • 使用mp.solutions.hands.Hands()创建一个手部检测器对象。
    • hands.process(imgRGB)将每个视频帧传递给检测器进行处理,并返回检测结果。
  4. 处理每个视频帧:

    • 使用capture.read()读取视频帧,并将返回的结果存储在retvalimg变量中。
    • 使用cv2.cvtColor(img, cv2.COLOR_BGR2RGB)将图像从BGR格式转换为RGB格式,以便与MediaPipe兼容。
    • 使用hands.process(imgRGB)对图像进行手部检测,返回结果保存在results变量中。
  5. 绘制检测结果:

    • 使用results.multi_hand_landmarks判断是否检测到了手部。
    • 对于每个检测到的手部,使用handLms.landmark遍历所有关键点,并将其坐标从归一化坐标转换为图像上的实际坐标。
    • 使用cv2.circle()在图像中绘制关键点圆圈。
    • 使用mpDraw.draw_landmarks()在图像中绘制手部关键点和连接线。
  6. 计算帧率:

    • 使用time.time()获取当前时间戳,计算时间间隔以确定帧率。
    • 使用cv2.putText()在图像上显示帧率。
  7. 显示图像并等待按键:

    • 使用cv2.imshow()显示处理后的图像。
    • 使用cv2.waitKey(1)等待用户按键,参数1表示等待1毫秒。
  8. 释放资源:

    • 在循环结束后,使用capture.release()释放视频捕获对象。
    • 使用cv2.destroyAllWindows()关闭所有窗口。
  9. 退出程序:

    • 按下空格键(32)可以退出程序。

3.面部捕捉(face)

该段代码使用OpenCV和MediaPipe库来检测摄像头视频中的人脸,并在图像上绘制人脸关键点和轮廓。

import cv2
import time
import mediapipe as mpcapture = cv2.VideoCapture(0)mpFaceMesh = mp.solutions.face_mesh
faceMesh = mpFaceMesh.FaceMesh()
mpDraw = mp.solutions.drawing_utilspTime = 0  # 上一帧的时间
cTime = 0  # 下一帧的时间while (capture.isOpened()):retval, img = capture.read()imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)results = faceMesh.process(imgRGB)if results.multi_face_landmarks:for faceLms in results.multi_face_landmarks:for id, lm in enumerate(faceLms.landmark):h, w, c = img.shapecx, cy = int(lm.x * w), int(lm.y * h)# cv2.circle(img, (cx, cy), 15, (0, 255, 0), cv2.FILLED)mpDraw.draw_landmarks(img, faceLms, mpFaceMesh.FACEMESH_CONTOURS)cTime = time.time()fps = 1 / (cTime - pTime)pTime = cTimecv2.putText(img, "fps:" + str(int(fps)), (10, 60), cv2.FONT_HERSHEY_PLAIN, 3, (0, 0, 255), 3)cv2.imshow("Video", img)key = cv2.waitKey(1)if key == 32:breakcapture.release()
cv2.destroyAllWindows()

以电影情节画面替代摄像头画面,代码效果展示如下:
在这里插入图片描述


以下是代码的解释:

  1. 导入所需的库:

    • cv2:用于处理图像和视频的OpenCV库。
    • time:用于计算帧率的标准Python库。
    • mediapipe as mp:MediaPipe库,用于人脸检测和特征点估计。
  2. 创建视频捕获对象:

    • 使用cv2.VideoCapture(0)创建一个视频捕获对象,参数0表示使用默认摄像头。
  3. 初始化MediaPipe人脸检测器:

    • 使用mp.solutions.face_mesh.FaceMesh()创建一个人脸检测器对象。
    • faceMesh.process(imgRGB)将每个视频帧传递给检测器进行处理,并返回检测结果。
  4. 处理每个视频帧:

    • 使用capture.read()读取视频帧,并将返回的结果存储在retvalimg变量中。
    • 使用cv2.cvtColor(img, cv2.COLOR_BGR2RGB)将图像从BGR格式转换为RGB格式,以便与MediaPipe兼容。
    • 使用faceMesh.process(imgRGB)对图像进行人脸检测,返回结果保存在results变量中。
  5. 绘制检测结果:

    • 使用results.multi_face_landmarks判断是否检测到了人脸。
    • 对于每个检测到的人脸,使用faceLms.landmark遍历所有关键点,并将其坐标从归一化坐标转换为图像上的实际坐标。
    • 使用mpDraw.draw_landmarks()在图像中绘制人脸关键点和轮廓。
  6. 计算帧率:

    • 使用time.time()获取当前时间戳,计算时间间隔以确定帧率。
    • 使用cv2.putText()在图像上显示帧率。
  7. 显示图像并等待按键:

    • 使用cv2.imshow()显示处理后的图像。
    • 使用cv2.waitKey(1)等待用户按键,参数1表示等待1毫秒。
  8. 释放资源:

    • 在循环结束后,使用capture.release()释放视频捕获对象。
    • 使用cv2.destroyAllWindows()关闭所有窗口。
  9. 退出程序:

    • 按下空格键(32)可以退出程序。

4.姿势捕捉(pose)

该段代码使用OpenCV和MediaPipe库来检测摄像头视频中的人体姿势,并在图像上绘制关键点和连接线。

import cv2
import time
import mediapipe as mpvideo = cv2.VideoCapture(0)
mpPose = mp.solutions.pose
pose = mpPose.Pose()
mpDraw = mp.solutions.drawing_utilspTime = 0  # 上一帧的时间
cTime = 0  # 下一帧的时间while True:retval, img = video.read()imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)results = pose.process(imgRGB)if results.pose_landmarks:for id, lm in enumerate(results.pose_landmarks.landmark):h, w, c = img.shapecx, cy = int(lm.x * w), int(lm.y * h)cv2.circle(img, (cx, cy), 15, (0, 255, 0), cv2.FILLED)mpDraw.draw_landmarks(img, results.pose_landmarks, mpPose.POSE_CONNECTIONS)cTime = time.time()fps = 1 / (cTime - pTime)pTime = cTimecv2.putText(img, "fps:" + str(int(fps)), (10, 60), cv2.FONT_HERSHEY_PLAIN, 3, (0, 0, 255), 3)cv2.imshow("Video", img)key = cv2.waitKey(10)if key == 32:breakvideo.release()
cv2.destroyAllWindows()

效果展示:

        在这里插入图片描述


以下是代码的解释:

  1. 导入所需的库:

    • cv2:用于处理图像和视频的OpenCV库。
    • time:用于计算帧率的标准Python库。
    • mediapipe as mp:MediaPipe库,用于人体姿势检测。
  2. 创建视频捕获对象:

    • 使用cv2.VideoCapture(0)创建一个视频捕获对象,参数0表示使用默认摄像头。
  3. 初始化MediaPipe人体姿势检测器:

    • 使用mp.solutions.pose.Pose()创建一个人体姿势检测器对象。
    • pose.process(imgRGB)将每个视频帧传递给检测器进行处理,并返回检测结果。
  4. 处理每个视频帧:

    • 使用video.read()读取视频帧,并将返回的结果存储在retvalimg变量中。
    • 使用cv2.cvtColor(img, cv2.COLOR_BGR2RGB)将图像从BGR格式转换为RGB格式,以便与MediaPipe兼容。
    • 使用pose.process(imgRGB)对图像进行人体姿势检测,返回结果保存在results变量中。
  5. 绘制检测结果:

    • 使用results.pose_landmarks判断是否检测到了人体姿势。
    • 对于每个检测到的关键点,使用landmark遍历所有关键点,并将其坐标从归一化坐标转换为图像上的实际坐标。
    • 使用cv2.circle()在图像中绘制关键点圆圈。
    • 使用mpDraw.draw_landmarks()在图像中绘制人体姿势关键点和连接线。
  6. 计算帧率:

    • 使用time.time()获取当前时间戳,计算时间间隔以确定帧率。
    • 使用cv2.putText()在图像上显示帧率。
  7. 显示图像并等待按键:

    • 使用cv2.imshow()显示处理后的图像。
    • 使用cv2.waitKey(10)等待用户按键,参数10表示等待10毫秒。
  8. 释放资源:

    • 在循环结束后,使用video.release()释放视频捕获对象。
    • 使用cv2.destroyAllWindows()关闭所有窗口。
  9. 退出程序:

    • 按下空格键(32)可以退出程序。

附:侯小啾Python基础领航计划专栏已上线,特价专栏只需9.9即可扫清入门路上一切障碍。
跟着小啾,入门无忧!无论是系统化学习,还是碎片化学习都是很好的选择,点击下方链接即可订阅:
https://blog.csdn.net/weixin_48964486/category_12510091.html
更多精彩内容敬请期待,作者侯小啾持续为您推出!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/214281.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

stm32学习总结:3、Proteus8+STM32CubeMX+MDK很有搞头

stm32学习总结:3、Proteus8STM32CubeMXMDK很有搞头 文章目录 stm32学习总结:3、Proteus8STM32CubeMXMDK很有搞头一、前言二、资料收集三、实际案例-点灯1、Proteus8安装2、Proteus创建stm32F013C6项目并添加外围LED电路3、STM32CubeMX配置F103C6引脚生成…

12.10_黑马数据结构与算法笔记Java

目录 058 链表 e10 判环算法1 thinking:什么是空指针? 058 链表 e10 判环算法2 059 数组 e01 合并有序数组1 059 数组 e01 合并有序数组2 060 队列 链表实现1 061 队列 链表实现2 062 队列 环形数组实现 方法1-1 063 队列 环形数组实现 方法1-2…

带有 RaspiCam 的 Raspberry Pi 监控和延时摄影摄像机

一、说明 一段时间以来,我一直想构建一个运动激活且具有延时功能的树莓派相机,但从未真正找到我喜欢的案例。我在thingiverse上找到了这个适合树莓派和相机的好案例。它是为特定的鱼眼相机设计的,但从模型来看,我拥有的廉价中国鱼…

【Vulnhub 靶场】【Hackable: III】【简单 - 中等】【20210602】

1、环境介绍 靶场介绍:https://www.vulnhub.com/entry/hackable-iii,720/ 靶场下载:https://download.vulnhub.com/hackable/hackable3.ova 靶场难度:简单 - 中等 发布日期:2021年06月02日 文件大小:1.6 GB 靶场作者&…

Docker | 自定义网络

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏:Docker系列 ✨特色专栏: MySQL学习 🥭本文内容: Docker | 自定义网络 📚个人知识库: 知识库,欢迎大家访问 1.前言 大家好,我是Leo哥…

当视觉遇到毫米波雷达:自动驾驶的三维目标感知基准

​ 文章:Vision meets mmWave Radar: 3D Object Perception Benchmark for Autonomous Driving 作者: Yizhou Wang, Jen-Hao Cheng, Jui-Te Huang , Sheng-Yao Kuan , Qiqian Fu , Chiming Ni 编辑:点云PCL 欢迎各位加入知识星球,获取PDF…

vector类

> 作者简介:დ旧言~,目前大二,现在学习Java,c,c,Python等 > 座右铭:松树千年终是朽,槿花一日自为荣。 > 目标:熟悉vector库 > 毒鸡汤:从人生低谷…

【面试总结】Java面试题目总结(一)

&#xff08;以下仅为个人见解&#xff0c;如果有误&#xff0c;欢迎大家批评并指出错误&#xff0c;谢谢大家&#xff09; 1.项目中的验证码功能是如何实现的&#xff1f; 第一步&#xff1a;在项目的pom.xml文件中导入 EasyCaptcha 的依赖&#xff1b; <dependency>…

20231207给NanoPC-T4(RK3399)开发板刷Android12的挖掘机方案的LOG

20231207给NanoPC-T4(RK3399)开发板刷Android12的挖掘机方案的LOG 2023/12/7 23:50 SDK&#xff1a;rk356x_android12_220722.tgz 只修改DTS的DTC部分就【直接】可以跑NanoPC-T4 参考资料&#xff1a; http://www.friendlyelec.com.cn/agent.asp http://www.friendlyelec.com.c…

实现安装“自由化”!在Windows 11中如何绕过“您尝试安装的应用程序未通过微软验证”

这篇文章描述了如果你不能安装应用程序,而是当你在Windows 11中看到消息“您尝试安装的应用程序未通过微软验证”时该怎么办。完成这些步骤将取消你安装的应用程序必须经过Microsoft验证的要求。 使用设置应用程序 “设置”应用程序提供了绕过此警告消息的最简单方法,以便你…

python简易学生管理 + MySQL

数据库表 Python代码部分 import pymysqlclass StMgmt(object):def tips(self):"""提示用户选择的操作"""print("""学生管理系统 1.01.查看所有信息2.查看学生信息3.修改学生信息4.增加学生信息5.退出学生系统"""…

【网络安全技术】传输层安全——SSL/TLS

一、TLS位置及架构 TLS建立在传输层TCP/UDP之上&#xff0c;应用层之下。 所以这可以解决一个问题&#xff0c;那就是为什么抓不到HTTP和SMTP包&#xff0c;因为这两个在TLS之上&#xff0c;消息封上应用层的头&#xff0c;下到TLS层&#xff0c;TLS层对上层消息整个做了加密&…

<JavaEE> 经典设计模式之 -- 单例模式(“饿汉模式”和“懒汉模式”实现单例模式)

目录 一、单例模式概述 二、“饿汉模式”实现单例模式 三、“懒汉模式”实现单例模式 3.1 单线程下的“懒汉模式” 3.2 多线程下的“懒汉模式” 一、单例模式概述 1&#xff09;什么是单例模式&#xff1f; 单例模式是一种设计模式。 单例模式可以保证某个类在程序中只存…

【Java数据结构 -- 顺序表】

List和ArrayList与顺序表 一. List1.1 List介绍2.1 常见接口介绍3.1 List的使用 二. ArrayList与顺序表1.线性表2.顺序表2.1 接口的实现2.2 顺序表的创建2.3 顺序表的打印2.4 顺序表的插入2.5 顺序表的按索引位置插入数据2.6 判断顺序表是否包含某个数2.7 返回顺序表某个数的索…

2023-12学习笔记

1.NonNull要手动写无参构造器 这是一个我今天研究了很久的问题&#xff0c;开始不知道原因是在这里&#xff0c;还在那想是不是Data覆盖了无参构造&#xff0c;结果当然不是。先说下解决历程 1.问题起因 通过RequestBody接收前端报文的时候报错&#xff0c;大致是说我构造方…

python中tkinter实现GUI程序:三个实例

python中tkinter实现GUI程序 写在最前面Python中使用Tkinter实现GUI程序的基本元素Tkinter简介基本元素1. 根窗口&#xff08;Root Window&#xff09;2. 小部件&#xff08;Widgets&#xff09;3. 布局管理4. 事件处理 1.用 tkinter实现一个简单的 GUI程序,单击“click”按钮&…

Java项目-瑞吉外卖Day3

填充公共字段&#xff1a; 目的&#xff1a;由于某些属性&#xff0c;例如createdTime这些需要填充的字段会在多个地方出现&#xff0c;所以考虑使用公共字段自动填充的办法减少重复代码。 在对应属性上加入TableField注解。通过fill字段表明策略&#xff0c;是插入/更新的时候…

如何搭建废品上门回收小程序

如今&#xff0c;随着环境保护意识的增强&#xff0c;废品的回收和再利用变得越来越重要。为了方便人们进行废品回收&#xff0c;搭建一个废品上门回收的小程序成为了一个不错的选择。本文将介绍如何从零开始搭建一个废品上门回收小程序。 …

【Go自学版】02-goroutine

利用时间片分割进程&#xff0c;致使宏观上A,B,C同时执行&#xff08;并发&#xff09; CPU利用率包含了执行和切换&#xff0c;进程/线程的数量越多&#xff0c;切换成本也会增大 最大并行数&#xff1a;GOMAXPROCS work stealing: 偷其他队列的G hand off: 当前G1阻塞&#…

css 修改滚动条样式,解决Windows浏览器中滚动条不美观问题

Windows环境中的浏览器中滚动条默认是直接显示了&#xff0c;不管光标是否进入该区域&#xff0c;这样就很不美观&#xff0c;如下图&#xff1a; 之前样式为 .well {display: block;background-color: #f2f2f2;border: 1px solid #ccc;margin: 5px;width: calc(100% - 12px);h…