AI 绘画Stable Diffusion 研究(四)sd文生图功能详解(上)


大家好,我是风雨无阻。


通过前面几篇AI 绘画Stable Diffusion 研究系列的介绍,我们完成了Stable Diffusion整合包的安装、模型ControlNet1.1 安装、模型种类介绍与安装,相信看过教程的朋友们,手上已经有可以操作实践的Stable Diffusion 环境了。


那么本篇文章将给大家带来 Stable Diffusion 最重要也是使用最多的文生图功能介绍,由于内容比较多,这里会分成上、下两篇文章进行介绍。


今天为大家带来的是 AI 绘画Stable Diffusion 研究(四)sd文生图功能详解(上)。


大家进入到web ui 页面后,首先看到的是下面这个界面。


在这里插入图片描述

上图一目了然的标注了文生图界面大致的功能。
接下来,就详细讲解一下每个功能的使用方法和注意事项。


1、模型选择区域

模型对于 SD 绘图来说非常重要,不同的模型类型、质量会很大程度的决定最终的出图效果。


2、功能栏

包括了常见的 文生图、图生图、后期处理等常用功能。不同的功能页面也不同,在这里,我们先针对经常使用的文生图模块页面来进行讲解。


3、正向提示词

正向提示词prompt &tag**: 如果大家使用过 ChatGPT 就应该知道 Prompt 是什么。说的直白点就是我们想让 SD 帮忙生成什么样的图的描述,比如角色或场景等,**需要使用英文进行描述


正向Prompt &Tag 改善画质用的 Tag ,适用于二次元风格,可以考虑搭配不同的模型使用:

(masterpiece:1.2), best quality, masterpiece, highres, original, extremely detailed wallpaper.oerfect lighting,(extremely detailed CG:1.2), drawing, paintbrush

4、反向提示词

反向提示词 Prompt&Tag : 就是告诉SD 生成图里 ,不想出现的内容, 需要使用英文进行描述


通用反面 Tag,保底不出古神用的 Tag,适用于二次元风格,可以考虑搭配不同的模型使用:

NSFW, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality,(monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, (ugly:1.331),duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:l.331), mutated hands, (poorly drawnands:1.5), blurry, (bad anatomy:1.21), (bad proportions:1.331), extra limbs, (disfigured:1.331),missing arms:1.331), (extra legs:1.331), (fused fingers:1.61051), (too many fingers:1.61051),unclear eyes:1.331), lowers, bad hands, missing fingers, extra digit,bad hands, missing fingers.((extra arms and legs)))

5、生成按钮

调整完其他设置后,点击生成,开始生成图片,也可以不做调整。


6、采样迭代步数

AI 绘画的过程是将纯噪点图,变为高清图的一个过程,采样迭代步数,就是这个过程需要的步数,随着步数的增加,图片的细节也不断增多。


采样迭代步数不能设置太小,也不能设置太大。设置太小,图片效果就不好;设置太大, 生成图花的时间就越长,如果超过40 步以后,那么画面的变化是基本看不出来。


采样迭代步数,推荐 20-30 之间,通常28是一个不错的值。


7、采样方法

采用什么样的绘画方式算法,以及“画多少笔” 来绘图,一定程度上决定出图的质量。

以下是 每个采样方法,对应生成步数的效果。


如图:

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


综合以上参考,根据出图质量、采样步数的对比,对于新手朋友来说 推荐无脑使用:DPM adaptive 采样方法


8、出图显示区域

9、出图大小

出图大小 :默认 512**512 像素 ,因为模型训练时,都是使用这个尺寸,因此效果最好,所以一般保持默认即可,当然如果要出 3:2 的图,也可以设置为: 512* 768 , 768*512 。

根据自己的需要进行调整,也可以不用调整。出图越大,对于显卡要求越高。


10、出图数量

出图数量=总批次数x每批数量。

每批的数量越多:需要的显存越大。

总批次越多:根据实际经验,生成的图片质量要好一些,但是花的时间越长。

可根据自己的需求和电脑配置进行选择。


11、出图存储目录

可以查找历史出图


12、随机种子

模仿别人的图,需要进行调整,一般不用调整。


13、面部修复

面部修复,首先需要在设置中,按如下选项进行设置 :


在这里插入图片描述


然后依次点击:保存设置,重载前端,让其生效:

在这里插入图片描述


14、高分辨率修复

因为我们出图是512*512, 如果要放大,比如1024x1024 ,就需要勾选高分辨率修复功能。


A、放大算法选择推荐

真实风格推荐选择:R-ESRGAN 4x+

在这里插入图片描述


动漫风格推荐选择:R-ESRGAN 4x+ Anim

在这里插入图片描述


B、放大倍数

根据电脑配置进行选择

显卡显存高 选择 2-3倍

显卡显存不高,选择1.5-2倍


15、提示词引导系数(CFD Scale):

提示词引导系数,是控制提示词与生成的图像相关性 ,可以理解为 “越小AI越自由发挥” ,一般推荐数值为5-15之间,默认为 7 。

如果数值太大,会出现锐化、线条变粗的效果;

如果太小AI就自由发挥了,不看 Tag, 同时图像的饱和度也会偏低。


参考以下对比图:

在这里插入图片描述


在这里插入图片描述


16、随机种子:

随机种子是生成过程中所有随机性的源头, 每个种子都是一幅不一样的画。

默认的 -1 是代表每次都换一个随机种子,生成的每张图就不同。由随机种子,生成了随机的噪声图,再交给AI进行画出来。

使用固定的随机种子 ,可控制生成图与之前的图更相似。


17、保存

针对部署到本地的,意义不大。

如果针对部署到服务器上的,点击保存后,就可以下载。


18、打包下载

生成多张图的时候,图片会打包到压缩包内,就可以下载,本地基本用不到。

在这里插入图片描述


19、发送到图生图、发送到重绘、发送到后期处理,这三个功能,这里就先不做介绍。后边介绍图生图功能的时候再做详细说明。


20、图标功能介绍

在这里插入图片描述


图标1: 箭头 从提示词或上次生成的图片中,读取生成参数。

图标2: 清空提示词

图标3: 快捷显示隐藏扩展模型

图标4: 预设样式,保存反向提示词。


21、Tag 加权、减权用法简单说明

大家可能会经常看到别人发的 Tag 里面会有一些符号?比如大小括号等等。这些属于进阶用法,这里仅仅简单提及一下。

这里以 Tree 这个 Tag 作为例子进行说明。

(Tree) : 加权重,这是1.1倍。

((Tree)) :括号叠加,这是 1.1*1.1=1.21倍。

[Tree] :减权重,一般用的少。减权重也一般就用下面的指定倍数。

(Tree:1.5) 指定倍数,这里是1.5倍的权重,还可以 (Tree:0.9) 达到减权重的效果。


好了,今天的内容就到这里,下一篇将给大家详细讲解提示词的规则和写作技巧,敬请期待!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/21276.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文阅读-BotPercent: Estimating Twitter Bot Populations from Groups to Crowds

目录 摘要 引言 方法 数据集 BotPercent架构 实验结果 活跃用户中的Bot数量 Bot Population among Comment Sections Bot Participation in Content Moderation Votes Bot Population in Different Countries’ Politics 论文链接:https://arxiv.org/pdf/23…

HTML 元素的属性有哪些?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ class⭐ id⭐ style⭐ src⭐ href⭐ alt⭐ width和height⭐ disabled⭐ value⭐ required⭐ placeholder⭐ checked⭐ selected⭐ target⭐ colspan和rowspan⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得…

争夺年度智能汽车「中间件」方案提供商TOP10,谁率先入围

进入2023年,整车电子架构升级进入新周期,无论是智能驾驶、智能座舱、车身控制还是信息网络安全,软件赋能仍是行业的主旋律。 作为智能汽车赛道的第三方研究咨询机构,高工智能汽车研究院持续帮助车企、投资机构挖掘具备核心竞争力…

C#实现多线程局域网扫描器的思路与具体代码

C#实现多线程局域网扫描器的思路与具体代码 思路: 获取局域网内所有 IP 地址遍历所有 IP 地址,使用 Ping 命令测试主机是否在线如果主机在线,则扫描主机上的所有端口,确定哪些端口是开放的输出扫描结果 在上述过程中&#xff0…

maven中的scope

1、compile:默认值,可省略不写。此值表示该依赖需要参与到项目的编译、测试以及运行周期中,打包时也要包含进去。 2、test:该依赖仅仅参与测试相关的工作,包括测试代码的编译和执行,不会被打包,…

实例030 窗口颜色的渐变

实例说明 在程序设计时,可以通过设置窗体的BackColor属性来改变窗口的背景颜色。但是这个属性改变后整个窗体的客户区都会变成这种颜色,并且非常单调。如果窗体的客户区可以向标题栏一样能够体现颜色的渐变效果,那么窗体风格将会另有一番风味…

2024年浙财MBA项目招生信息全面了解

2024年全国管理类硕士联考备考已经到了最火热的阶段,不少考生开始持续将注意力集中在备考的规划中!杭州达立易考教育整合浙江省内的MBA项目信息,为大家详细梳理了相关报考参考内容,方便大家更好完成择校以及针对性的备考工作。本期…

京东开源的、高效的企业级表格可视化搭建解决方案:DripTable

DripTable 是京东零售推出的一款用于企业级中后台的动态列表解决方案,项目基于 React 和 JSON Schema,旨在通过简单配置快速生成页面动态列表来降低列表开发难度、提高工作效率。 DripTable 目前包含以下子项目:drip-table、drip-table-gene…

静态网页加速器:优化性能和交付速度的 Node.js 最佳实践

如何使用 Node.js 发布静态网页 在本文中,我们将介绍如何使用 Node.js 来发布静态网页。我们将创建一个简单的 Node.js 服务器,将 HTML 文件作为响应发送给客户端。这是一个简单而灵活的方法,适用于本地开发和轻量级应用。 1、创建静态网页…

Linux中提示No such file or directory解决方法

说明: 在linux下,./xxx.sh执行shell脚本时会提示No such file or directory。但shell明明存在,为什么就是会提示这个呢? 这种其实是因为编码方式不对,如你在win下编辑sh,然后直接复制到linux下面 实现&…

机器学习笔记之优化算法(九)收敛速度的简单认识

机器学习笔记之优化算法——收敛速度的简单认识 引言收敛速度的判别标准 Q \mathcal Q Q-收敛速度 R \mathcal R R-收敛速度关于算法复杂度与收敛速度 引言 本节对收敛速度简单介绍。 收敛速度的判别标准 我们之前几节介绍了线搜索方法 ( Line Search Method ) (\text{Line …

leetcode----JavaScript 详情题解(2)

目录 2629. 复合函数 2631. 分组 2634. 过滤数组中的元素 2635. 转换数组中的每个元素 2637. 有时间限制的 Promise 对象 2648. 生成斐波那契数列 2649. 嵌套数组生成器 2665. 计数器 II 2666. 只允许一次函数调用 2629. 复合函数 恒等函数 在数学里,恒等函…

kubectl get node notReady | network not ready | kube-flannel not ready

问题 # 查看 node 状态 notReady [rootlocalhost ~]# kubectl get node NAME STATUS ROLES AGE VERSION node1 NotReady control-plane 31m v1.27.4 # 查看详细信息 network not ready [rootlocalhost ~]# kubectl describe node node1 Name: …

【Linux命令200例】awk文本处理工具的系统与实战讲述(常用)

🏆作者简介,黑夜开发者,全栈领域新星创作者✌,阿里云社区专家博主,2023年6月csdn上海赛道top4。 🏆数年电商行业从业经验,历任核心研发工程师,项目技术负责人。 🏆本文已…

美团基础架构面经总结汇总

美团基础架构的面经。 问的全是基础,一个编程语言的问都没有。 问题记录 MySQL-MVCC InooDB是通过 MVCC 实现可重复读的隔离级别的,MVCC 就是多版本并发控制,它其实记录了历史版本的数据,解决了读写并发冲突问题。有一个版本编码,然后它进入了各种操作下的数据状态,能…

篇一:单例模式:C++中的独一无二

篇一:“单例模式:C中的独一无二” 设计模式在软件开发中起到了至关重要的作用,其中单例模式是最为常用且基础的设计模式之一。单例模式确保一个类只有一个实例,并提供全局访问点,以保证系统中的某个对象只有唯一的存在…

redis数据未到过期时间被删除

1. 问题描述 使用了jeecgboot开发后端代码,代码设置的redis过期时间为24小时,部署使用的宝塔面板,在redis中看到的过期时间也是为24小时,但是并未到过期时间,数据就被删除。 2. 解决办法 观察了一下redis中的数据&a…

DataGrip实时模板的配置

DataGrip实时模板的配置 File→Setting→Editor→Live Templates→点击“”→Live Template 即可新写入一条模板语句 写入新模板 缩写:seld select $END$ from dual; 注意:一开始都是默认无应用的,需要手动配置应用于所有SQL 点击difine(…

【计算机网络】NAT技术

文章目录 1. NAT技术简介2. 使用NAT技术转换IP的过程3. NAPT4. NAT技术的缺陷5. NAT和代理服务器 1. NAT技术简介 NAT(Network Address Translation,网络地址转换)技术,是解决IP地址不足的主要手段,并且能够有效避免外…

TestFilterOnProxyWithoutTarget

目录 1 TestFilterOnProxyWithoutTarget 1.1 Test_ex_thrown_from_filters 1.2 Test_catching_ex_thrown_from_filters 1.2.1 // Exceptions are handled TestFilterOnProxyWithoutTarget using Flatwhite.Core.Tests.Attributes; using Microsoft.Extensions.Depend…