网络层重点协议——IP协议详解

 ✏️✏️✏️今天给大家分享的是网络层的重点协议——IP协议。

清风的CSDN博客

🛩️🛩️🛩️希望我的文章能对你有所帮助,有不足的地方还请各位看官多多指教,大家一起学习交流!

✈️✈️✈️动动你们发财的小手,点点关注点点赞!在此谢过啦!哈哈哈!😛😛😛

目录

一、IP 协议格式 

 二、认识 IP 地址

2.1 概念

2.2 作用

2.3 格式

2.4 组成 

 2.5 分类 

2.6 特殊的IP地址

2.7 子网掩码

2.7.1 格式

2.7.2 作用

2.7.3 计算方式 

三、NAT 机制 


一、IP 协议格式 

  • 4位版本号(version):指定IP协议的版本,对于IPv4来说,就是4。
  • 4位头部长度(header length):IP头部的长度是多少个32bit,也就是 length * 4 的字节 数。4bit表示最大的数字是15,因此IP头部最大长度是60字节。
  • 8位服务类型(Type Of Service):3位优先权字段(已经弃用),4位TOS字段,和1位保留字段(必须置为0)。4位TOS分别表示:最小延时,最大吞吐量,最高可靠性,最小成本,这四者相互冲突,只能选择一个。
  • 16位总长度(total length):IP数据报整体占多少个字节。
  • 16位标识(id):唯一的标识主机发送的报文。如果IP报文在数据链路层被分片了,那么每一个片里面的这个id都是相同的。
  • 3位标志字段:第一位保留(保留的意思是现在不用,但是还没想好说不定以后要用到)。第二位置为1表示禁止分片,这时候如果报文长度超过MTU,IP模块就会丢弃报文。第三位表示"更多分片",如果分片了的话,最后一个分片置为0,其他是1。类似于一个结束标记。
  • 13位分片偏移(framegament offset):是分片相对于原始IP报文开始处的偏移。其实就是在表示当前分片在原报文中处在哪个位置。实际偏移的字节数是这个值 * 8 得到的。因此,除了最后一个报文之外,其他报文的长度必须是8的整数倍(否则报文就不连续了)。
  • 8位生存时间(Time To Live,TTL):数据报到达目的地的最大报文跳数。一般是64。每次经过一个路由,TTL - 1,一直减到0还没到达,那么就丢弃了。这个字段主要是用来防止出现路由循环。
  • 8位协议:表示上层协议的类型。
  • 16位头部校验和:使用CRC进行校验,来鉴别头部是否损坏。
  • 32位源地址和32位目标地址:表示发送端和接收端。
  • 选项字段(不定长,最多40字节):不做介绍

 二、认识 IP 地址

2.1 概念

IP 地址( Internet Protocol Address )是指互联网协议地址,又译为网际协议地址。

2.2 作用

IP 地址是 IP 协议提供的一种统一的地址格式,它为互联网上的每一个网络和每一台主机分配一个逻辑地址,以此来屏蔽物理地址的差异。

2.3 格式

IP 地址是一个 32 位的二进制数,通常被分割为 4 “8 位二进制数 (也就是 4 个字节),如:
01100100.00000100.00000101.00000110
通常用 点分十进制 的方式来表示,即 a.b.c.d 的形式( a,b,c,d 都是 0~255 之间的十进制整数)。如:100.4.5.6。

        IP协议有两个版本,IPv4和IPv6。IPv4数量=2^32,大约43亿左右,而TCP/IP协议规定,每个主机都需要有一个IP地址。对于全世界计算机来说,这个数量是不够的,所以后来推出了IPv6(长度128位,是IPv4的4倍)。但因为目 前IPv4还广泛的使用,且可以使用其他技术来解决IP地址不足的问题,所以IPv6也就没有普及。

2.4 组成 

IP 地址分为两个部分,网络号和主机号:
  • 网络号标识网段,保证相互连接的两个网段具有不同的标识
  • 主机号标识主机,同一网段内,主机之间具有相同的网络号,但是必须有不同的主机号
通过合理设置网络号和主机号,就可以保证在相互连接的网络中,每台主机的 IP 地址都是唯一的。
那么,如何划分网络号和主机号呢?

 2.5 分类 

过去曾经提出一种划分网络号和主机号的方案,把所有 IP 地址分为五类,如下图所示:

2.6 特殊的IP地址

  • 将IP地址中的主机地址全部设为0,就成为了网络号,代表这个局域网
  • 将IP地址中的主机地址全部设为1,就成为了广播地址,用于给同一个链路中相互连接的所有主机发送数据包
  • 127.*的IP地址用于本机环回(loop back)测试,通常是127.0.0.1
  • 本机环回主要用于本机到本机的网络通信(系统内部为了性能,不会走网络的方式传输),对于开发网络通信的程序(即网络编程)而言,常见的开发方式都是本机到本机的网络通

在上述的分类中,存在IP地址浪费的问题:

  • 单位一般会申请B类网络(C类连接主机数量有限),但实际网络架设时,连接的主机数量又常远小于65534B类连接主机数),造成IP地址浪费;同理,A类网络的IP地址也会造成大量的浪费。
  • 当一个单位申请了一个网络号。他想将该网络能表示的IP地址再分给它下属的几个小单位时,如果在申请新的网络就会造成浪费。
为了解决以上问题,引入子网掩码来进行子网划分。

2.7 子网掩码

2.7.1 格式

子网掩码格式和 IP 地址一样,也是一个 32 位的二进制数。其中左边是网络位,用二进制数字 “1” 表示, 1 的数目等于网络位的长度;右边是主机位,用二进制数字“0” 表示, 0 的数目等于主机位的长度。 子网掩码也可以使用二进制所有高位1相加的数值来表示。

2.7.2 作用

  •  划分A,B,C三类 IP 地址子网:
如一个 B IP 地址: 191.100.0.0 ,按 A ~ E 类分类来说,网络号二进制数为 16 位网络号 +16位主机号。 假设使用子网掩码 255.255.128.0 (即 17 ) 来划分子网,意味着划分子网后,高 17 位都是网络位 / 网络 号,也就是将原来 16 位主机号,划分为 1 位子网号 +15 位主机号。
此时, IP 地址组成为:网络号 + 子网号 + 主机号,网络号和子网号统一为网络标识(划分子网后的网络号 / 网段)

  • 网络通信时,子网掩码结合IP地址,可以计算获得网络号(划分子网后的网络号)及主机号(划分子网后的主机号)。一般用于判断目的IP与本IP是否为同一个网段。

       对于网络通信来说,发送数据报时,目的主机与发送端主机是否在同一个网段,流程是不一样的。 

2.7.3 计算方式 

  • 将 IP 地址和子网掩码进行“按位与”操作,得到的结果就是网络号。
  • 将子网掩码二进制按位取反,再与 IP 地址位与计算,得到的就是主机号。

示例:

关于IP协议还有一个重要功能——路由选择(数据报在IP协议下如何传输)

路由器转发的过程类似于问路的过程,每个路由器内部都有一个数据结构——路由表。数据报到达路由器,就查询路由表。若查到就直接按照这个方向转发。否则路由器给一个默认的方向,沿着默认方向走。

三、NAT 机制 

IPv4 协议中, IP 地址数量不充足,那么如何解决这个问题呢?
NAT 技术当前解决 IP 地址不够用的主要手段,是路由器的一个重要功能:
  • NAT能够将私有IP对外通信时转为全局IP,也就是就是一种将私有IP和全局IP相互转化的技术方法
  • 很多学校,家庭,公司内部采用每个终端设置私有IP,而在路由器或必要的服务器上设置全局IP
  • 全局IP要求唯一,但是私有IP不需要;在不同的局域网中出现相同的私有IP是完全不影响的

  • NAT路由器将源地址从10.0.0.10替换成全局的IP 202.244.174.37
  • NAT路由器收到外部的数据时,又会把目标IP从202.244.174.37替换回10.0.0.10
  • 在NAT路由器内部,有一张自动生成的,用于地址转换的表
  • 当 10.0.0.10 第一次向 163.221.120.9 发送数据时就会生成表中的映射关系

NAPT 工作过程 

那么问题来了,如果局域网内,有多个主机都访问同一个外网服务器,那么对于服务器返回的数据中,目的IP 都是相同的。那么 NAT 路由器如何判定将这个数据包转发给哪个局域网的主机?

这时候NAPT来解决这个问题了,使用IP+port来建立这个关联关系:

这种关联关系也是由 NAT 路由器自动维护的。例如在 TCP 的情况下,建立连接时,就会生成这个表项,在断开连接后,就会删除这个表项。
NAT 技术的缺陷
  • 无法从NAT外部向内部服务器建立连接
  • 转换表的生成和销毁都需要额外开销
  • 通信过程中一旦NAT设备异常,所有的TCP连接都会断开

🌈🌈🌈好啦,今天的分享就到这里。

🌈🌈🌈希望各位看官读完文章后,能够有所提升!

🎉🎉🎉创作不易,还希望各位大佬支持一下!

✈️✈️✈️点赞,你的认可是我创作的动力!

⭐⭐⭐收藏,你的青睐是我努力的方向!

✏️✏️✏️评论:你的意见是我进步的财富

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/212266.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里内部教程Jmeter 性能测试常用图表、服务器资源监控

性能测试常用图表 插件安装 步骤 1:安装插件管理器 在 Jmeter 官网上下载插件管理器 Plugins-manager-1.3.jar将 jar 包放入到 lib\ext 目录下重启 Jmeter,可以在选项下看到 Plugins Manager 选项 步骤 2:安装指定的插件 打开 Plugins Ma…

JVM虚拟机系统性学习-运行时数据区(堆)

运行时数据区 JVM 由三部分组成:类加载系统、运行时数据区、执行引擎 下边讲一下运行时数据区中的构成 根据线程的使用情况分为两类: 线程独享(此区域不需要垃圾回收) 虚拟机栈、本地方法栈、程序计数器 线程共享(数…

DataGrip常见问题

查询语句结果没有输出在output中 进行如下配置 配置后查询结果输出在output中 左侧数据库链接信息导航栏被隐藏 以上导航栏被隐藏,按下图操作调出

【Qt开发流程】之容器类2:使用STL风格迭代器进行遍历

概述 对于每个容器类,都有两种stl风格的迭代器类型:一种提供只读访问,另一种提供读写访问。应该尽可能使用只读迭代器,因为它们比读写迭代器快。 STL迭代器的API以数组中的指针为模型。例如,操作符将迭代器推进到下一项&#xf…

Java开发工具:IDEA 2023.3(WinMac)中文激活版

IntelliJ IDEA 2023是一款由JetBrains公司出品的集成开发环境(IDE),专为程序员设计。它以智能、高效和人性化为主要特点,致力于提高开发人员的生产力,帮助程序员更快、更好地编写代码。 在智能功能方面,Int…

Panalog 日志审计系统 sprog_deletevent.php SQL 注入漏洞复现

0x01 产品简介 Panalog大数据日志审计系统定位于将大数据产品应用于高校、 公安、 政企、 医疗、 金融、 能源等行业之中,针对网络流量的信息进行日志留存,可对用户上网行为进行审计,逐渐形成大数据采集、 大数据分析、 大数据整合的工作模式…

c语言一维数组总结详解

目录 介绍: 一维整型数组: 声明: 初始化: 打印输出: 输出结果: 浮点型数组: 代码: 运行结果: 补充: 一维字符数组: 字符数组声明及初始…

Python轴承故障诊断 (二)连续小波变换CWT

目录 前言 1 连续小波变换CWT原理介绍 1.1 CWT概述 1.2 CWT的原理和本质 2 基于Python的CWT实现与参数对比 2.1 代码示例 2.2 参数介绍和选择策略 2.2.1 尺度长度: 2.2.2 小波函数(wavelet): 2.3 凯斯西储大学轴承数据的…

《算法与数据结构》答疑

答疑 问题一问题二问题三问题四 问题一 在匹配成功时,在返回子串位置那里,为什么不是i-t的长度啊,为什么还要加一 问题二 问题三 问题四 问:如果题目让我们构造一个哈夫曼树,像我发的这个例题的话,我画成我…

深度学习与计算机视觉技术的融合

深度学习与计算机视觉技术的融合 一、引言 随着人工智能技术的不断发展,深度学习已经成为了计算机视觉领域的重要支柱。计算机视觉技术能够从图像和视频中提取有用的信息,而深度学习则能够通过学习大量的数据来提高计算机视觉技术的性能。本文将探讨深…

贪心算法和动态规划

目录 一、简介 二、贪心算法案例:活动选择问题 1.原理介绍 三、动态规划案例:背包问题 1.原理介绍 四、贪心算法与动态规划的区别 五、总结 作者其他文章链接 正则表达式-CSDN博客 深入理解HashMap:Java中的键值对存储利器-CSDN博客…

Java Web——过滤器 监听器

目录 1. Filter & 过滤器 1.1. 过滤器概述 1.2. 过滤器的使用 1.3. 过滤器生命周期 1.4. 过滤器链的使用 1.5. 注解方式配置过滤器 2. Listener & 监听器 2.1. 监听器概述 2.2. Java Web的监听器 2.2.1. 常用监听器 2.2.1.1. ServletContextListener监听器 …

Course3-Week1-无监督学习

Course3-Week1-无监督学习 文章目录 Course3-Week1-无监督学习1. 欢迎1.1 Course3简介1.2 数学符号约定 2. K-means算法2.1 K-means算法的步骤2.2 代价函数2.3 选择聚类数量 3. 异常检测3.1 异常检测的直观理解3.2 高斯分布3.3 异常检测算法3.4 选取判断阈值 ε \varepsilon ε…

Redis 持久化 —— 超详细操作演示!

四、Redis 持久化 四、Redis 持久化4.1 持久化基本原理4.2 RDB持久化4.3 AOF持久化4.4 RDB与AOF对比4.5 持久化技术转型 五、Redis 主从集群六、Redis 分布式系统七、Redis 缓存八、Lua脚本详解九、分布式锁 数据库系列文章: 关系型数据库: MySQL —— 基础语法大全…

【京东服装推荐系统 - 数据爬取、可视化和个性化推荐】

京东服装推荐系统 - 数据爬取、可视化和个性化推荐 前言数据集与数据爬取数据分析与可视化Django搭建可视化平台主要功能1. 数据可视化2. 我的收藏3. 商品推荐4. 登录注册5. 信息展示6. 信息管理7. 对数据的收藏8. 推荐 创新点结语 前言 在现今的电商市场中,服装领…

鸿蒙原生应用/元服务开发-新版本端云一体化模板体验反馈

一、前言 云端一体化模板是基于Serverless服务构建的一套模板,提供了应用生态常见场景需求的代码实现,开发者可将所需能力快速部署和集成到自己的应用中。 二、准备 体验最新的远端一体化模板,需要将云模板替换掉。为此,我们需要做…

我对迁移学习的一点理解——领域适应(系列3)

文章目录 1. 领域适应(Domain Adaptation)的基本概念2.领域适应(Domain Adaptation)的目标3.领域适应(Domain Adaptation)的实现方法4.领域适应(Domain Adaptation)的可以解决的问题…

gittee使用教学

一、git简介 Git是一个开源的分布式版本控制系统,用于敏捷高效的处理任何大小项目的版本管理。 核心功能: 项目的版本管理 团队协同开发 二、准备工作 1、下载 Git 2、除了选择安装位置以外,其他都无脑安装 3、检查一下安装情况 win…

这嵌入式“玩具”也太酷了吧~

大家周末好,我是bug菌~ 今天看到有朋友晒出了一个“玩具”,实在是太酷了,嵌入式开发人员谁不爱?于是去了解了下,顺便分享给大家~ 这机器是clockwork推出的uconsole,console大家这应该很熟悉&…

Leetcode刷题笔记题解(C++):92. 反转链表 II

思路:获取要反转的区间,拆开之后进行反转再拼接 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* …