智能优化算法应用:基于孔雀算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于孔雀算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于孔雀算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.孔雀算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用孔雀算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.孔雀算法

孔雀算法原理请参考:https://blog.csdn.net/u011835903/article/details/127779440
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

孔雀算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明孔雀算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/211576.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[足式机器人]Part2 Dr. CAN学习笔记-数学基础Ch0-2 特征值与特征向量

本文仅供学习使用 本文参考: B站:DR_CAN Dr. CAN学习笔记-数学基础Ch0-2 特征值与特征向量 1. 定义1.1 线性变换1.2 求解特征值,特征向量1.3 应用:对角化矩阵——解耦Decouple 2. Summary 1. 定义 A v ⃗ λ v ⃗ A\vec{v}\lambd…

【网络奇缘】- 计算机网络|深入学习物理层|网络安全

​ 🌈个人主页: Aileen_0v0🔥系列专栏: 一见倾心,再见倾城 --- 计算机网络~💫个人格言:"没有罗马,那就自己创造罗马~" 回顾链接:http://t.csdnimg.cn/ZvPOS 这篇文章是关于深入学习原理参考模型-物理层的相关知识点&…

Linux权限命令详解

Linux权限命令详解 文章目录 Linux权限命令详解一、什么是权限?二、权限的本质三、Linux中的用户四、linux中文件的权限4.1 文件访问者的分类(人)4.2 文件类型和访问权限(事物属性) 五、快速掌握修改权限的做法【第一种…

实战1-python爬取安全客新闻

一般步骤:确定网站--搭建关系--发送请求--接受响应--筛选数据--保存本地 1.拿到网站首先要查看我们要爬取的目录是否被允许 一般网站都会议/robots.txt目录,告诉你哪些地址可爬,哪些不可爬,以安全客为例子 2. 首先测试在不登录的…

Docker Network(网络)——8

目录: Docker 为什么需要网络管理Docker 网络架构简介 CNMLibnetwork驱动常见网络类型 bridge 网络host 网络container 网络none 网络overlay 网络docker 网络管理命令 docker network createdocker network inspectdocker network connectdocker network disconne…

class072 最长递增子序列问题与扩展【算法】

class072 最长递增子序列问题与扩展【算法】 code1 300. 最长递增子序列 // 最长递增子序列和最长不下降子序列 // 给定一个整数数组nums // 找到其中最长严格递增子序列长度、最长不下降子序列长度 // 测试链接 : https://leetcode.cn/problems/longest-increasing-subsequen…

你知道MySQL中 group by 怎么优化吗

更好的阅读体验,请点击 YinKai s Blog。 ​ 在 MySQL 中 group by 用于按照一个或多个列对结果集进行分组。在讨论 group by 怎么优化之前,我们先来看看 group by 的执行流程,这样我们才能对症下药。 group by 执行流程 ​ 我们先用下面的 …

Ubuntu 18.04使用Qemu和GDB搭建运行内核的环境

安装busybox 参考博客: 使用GDBQEMU调试Linux内核环境搭建 一文教你如何使用GDBQemu调试Linux内核 ubuntu22.04搭建qemu环境测试内核 交叉编译busybox 编译busybox出现Library m is needed, can’t exclude it (yet)的解释 S3C2440 制作最新busybox文件系统 https:…

2024年网络安全竞赛-Web安全应用

Web安全应用 (一)拓扑图 任务环境说明: 1.获取PHP的版本号作为Flag值提交;(例如:5.2.14) 2.获取MySQL数据库的版本号作为Flag值提交;(例如:5.0.22) 3.获取系统的内核版本号作为Flag值提交;(例如:2.6.18) 4.获取网站后台管理员admin用户的密码作为Flag值提交…

udp多播组播

import socket ,struct,time# 组播地址和端口号 MCAST_GRP 239.0.0.1 MCAST_PORT 8888 # 创建UDP socket对象 sock socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) # 绑定socket对象到本地端口号 # sock.bind((MCAST_GRP, MCAST_PORT)) …

【4】PyQt输入框

1. 单行文本输入框 QLineEdit控件可以输入单行文本 from PyQt5.QtWidgets import QApplication, QWidget, QLineEdit, QVBoxLayout from PyQt5.QtCore import * from PyQt5.QtGui import QIcon import sysdef init_widget(w: QWidget):# 修改窗口标题w.setWindowTitle(单行输…

前端面试——CSS面经(持续更新)

1. CSS选择器及其优先级 !important > 行内样式 > id选择器 > 类/伪类/属性选择器 > 标签/伪元素选择器 > 子/后台选择器 > *通配符 2. 重排和重绘是什么?浏览器的渲染机制是什么? 重排(回流):当增加或删除dom节点&…

【面试经典150 | 二叉树】从中序与后序遍历序列构造二叉树

文章目录 写在前面Tag题目来源题目解读解题思路方法一:递归 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更…… 专栏内容以分析题目为主,并附带一些对于本题涉及到的数据结构等内容…

Android : Room 数据库的基本用法 —简单应用

1.Room介绍: Android Room 是 Android 官方提供的一个持久性库,用于在 Android 应用程序中管理数据库。它提供了一个简单的 API 层,使得使用 SQLite 数据库变得更加容易和方便。 以下是 Android Room 的主要特点: 对象关系映射…

9.MySQL 索引

目录 ​​​​​​​概述 概念: 单列索引 普通索引 创建索引 查看索引 删除索引 唯一索引 创建唯一索引 删除唯一索引 主键索引 组合索引 创建索引 全文索引 概述 使用全文索引 空间索引 内部原理 相关算法: hash算法 二叉树算法 …

Spring基于XML文件配置AOP

AOP AOP,面向切面编程,是对面向对象编程OOP的升华。OOP是纵向对一个事物的抽象,一个对象包括静态的属性信息,包括动态的方法信息等。而AOP是横向的对不同事物的抽象,属性与属性、方法与方法、对象与对象都可以组成一个…

12.10多种编码方式,编码方案选择策略(递归级联),PDE,RLE代码

作者如何选择和设计编码方案,以实现高效的解压缩和高压缩比?BtrBlocks是否适用于所有类型的数据? 选择和设计编码方案: 结合多种高效编码方案:BtrBlocks 通过选择一组针对不同数据分布的高效编码方案,实现…

js判断是否对象自身为空

文章目录 一、前言二、JSON.stringify三、for in 配合 hasOwnProperty四、Object.keys五、Object.getOwnPropertyNames六、Object.getOwnPropertyNames 结合 Object.getOwnPropertySymbols七、Reflect.ownKeys八、最后 一、前言 如何判断一个对象为空? 先上结论&a…

MySql复习笔记03(小滴课堂) 事务,视图,触发器,存储过程

mysql 必备核心知识之事务的详细解析: 创建一个数据库表: 添加数据并开启事务。 添加数据并查询。 登录另一台服务器发现查不到这个表中的数据。 这是因为事务开启了,但是没有提交,只是把数据存到了内存中,还没有写入…