linux 应用开发笔记---【标准I/O库/文件属性及目录】

一,什么是标准I/O库

标准c库当中用于文件I/O操作相关的一套库函数,实用标准I/O需要包含头文件

二,文件I/O和标准I/O之间的区别

1.标准I/O是库函数,而文件I/O是系统调用

2.标准I/O是对文件I/O的封装

3.标准I/O相对于文件I/O具有更好的可移植性,且效率高

三,FILE文件指针

FILE是一个数据结构体,标准I/O实用FILE指针作为文件句柄

FILE文件指针用于标准I/O库函数,而文件描述符则用于文件I/O系统调用,FILE数据结构定义在标准 I/O 库函数头文件 stdio.h

四,标准输入,标准输出和标准错误

标准输入设备:计算机系统的标准的输入设备

标准输出设备:计算机所连接的键盘

输出标准设备:计算机所连接的显示器

五,标准I/O函数

1)打开文件:fopen()

FILE *fopen(const char *path, const char *mode);
path 参数 path 指向文件路径,可以是绝对路径、也可以是相对路径。
mode 参数 mode 指定了对该文件的读写权限

2)关闭文件:fclose()

int fclose(FILE *stream);
stream FILE 类型指针,也就是文件句柄,调用成功返回 0 ;失败将返回 EOF (也就是 -1

3)读取/写入文件:fread()/fwrite()

fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

 ptrfread()将读取到的数据存放在参数 ptr 指向的缓冲区中

size fread() 从文件读取 nmemb 个数据项,每一个数据项的大小为 size 个字节,所以总共读取的数据大
小为 nmemb * size 个字节。
nmemb 参数 nmemb 指定了读取数据项的个数。
stream FILE 指针
返回项:读取或者写入的数据项的数目

写入

#include <stdio.h>
#include <stdlib.h>int main(void)
{char buf[] = "hello world!";FILE *fp = NULL;if(NULL == (fp = fopen("./test.txt","w+"))){perror("open error");return 1;}printf("open ok!!!\r\n");if(sizeof(buf)>(fwrite(buf,1, sizeof(buf), fp))){printf("fwrite error");fclose(fp);exit(-1);}printf("写入成功\r\n");fclose(fp);return 0;
}

 运行结果:

 读取

#include <stdio.h>
#include <stdlib.h>int main(void)
{char buf[20] = "0";FILE *fp = NULL;int size;if(NULL == (fp = fopen("./test.txt","r"))){perror("open error");return 1;}printf("open ok!!!\r\n");if(12>(size = fread(buf,1, 11, fp))){if(ferror(fp)){printf("fread error");fclose(fp);exit(-1);}}printf("成功读取%d 个字节数据: %s\n", size, buf);fclose(fp);return 0;
}

运行结果:

 4)定位函数:fseek()

int fseek(FILE *stream, long offset, int whence);
stream FILE 指针。
offset lseek() 函数的 offset 参数意义相同。
whence lseek() 函数的 whence 参数意义相同

 5)判断是否到达文件末尾--feof()函数

int feof(FILE *stream);

6)判断是否发生了错误--ferror()函数

int ferror(FILE *stream);

7)清楚标志--clearerr()函数【自己独立设置标志】

void clearerr(FILE *stream);

 8)格式化输入

int printf(const char *format, ...);             
将程序中的字符串信息输出显示到终端int fprintf(FILE *stream, const char *format, ...); 
将格式化数据写入到由 FILE 指针指定的文件int dprintf(int fd, const char *format, ...);    
将格式化数据写入到由文件描述符 fd 指定的文件int sprintf(char *buf, const char *format, ...); 
将格式化数据存储在由参数 buf 所指定的缓冲区中int snprintf(char *buf, size_t size, const char *format, ...);
使用参数 size 显式的指定缓冲区的大小,如果写入到缓冲区的字节数大于参数 size 指定的大
小,超出的部分将会被丢弃!如果缓冲区空间足够大,snprintf()函数就会返回写入到缓冲区的字符数,与
sprintf()函数相同,也会在字符串末尾自动添加终止字符'\0'

9)格式化输出

int scanf(const char *format, ...);
scanf()函数将用户输入(标准输入)的数据进行格式化转换并进行存储int fscanf(FILE *stream, const char *format, ...);
从指定文件中读取数据,作为格式转换的输入数据,文件通过 FILE 指针指定int sscanf(const char *str, const char *format, ...);
从参数 str 所指向的字符串缓冲区中读取数据,作为格式转换的输入数据

六,文件I/O缓冲

1.内核缓冲

read()和write()系统调用是在进行文件读写操作的时候并不会直接访问磁盘设备,而是仅仅在用户空间缓冲区和内核缓冲区之间复制数据。调用write()函数后,会将数据保存到缓存数据区,然后等待内核在某个时刻将缓冲区的数据写入到磁盘设备中,但此时如果read()函数,会直接将数据缓存器的数据返回给应用程序。反之,同理

2.刷新文件I/O的内核缓冲区

对于一些操作,必须强制将文件I/O内核缓冲区中缓存的数据写入到磁盘设备

fsync()函数:

int fsync(int fd);
系统调用 fsync() 将参数 fd 所指文件的内容数据和元数据写入磁盘,只有在对磁盘设备的写入操作完成之后,fsync()函数才会返回,函数调用成功将返回 0 ,失败返回 -1

fdatasync()函数:

int fdatasync(int fd);
系统调用 fdatasync() fsync() 类似,不同之处在于 fdatasync() 仅将参数 fd 所指文件的内容数据写入磁盘,并不包括文件的元数据

sync()函数:

void sync(void);
系统调用 sync() 会将所有文件 I/O 内核缓冲区中的文件内容数据和元数据全部更新到磁盘设备中,该函数没有参数、也无返回值

3.控制文件I/O内核缓冲的标志

1.O_DSYNC 标志:write()调用之后调用 fdatasync()函数【元数据不同步】进行数据同步

2.O_SYNC 标志:write()调用都会自动将文件内容数据和元数据刷新到磁盘设备中

4.直接I/O:绕过内核缓冲

在open函数调用添加O_DIRECT就可以进行调用

直接 I/O 的对齐限制

应用程序中用于存放数据的缓冲区,其内存起始地址必须以块大小的整数倍进行对齐;
写文件时,文件的位置偏移量必须是块大小的整数倍;
写入到文件的数据大小必须是块大小的整数倍。

5.stdio缓冲

用户空间 的缓冲区,当应用程序中通过标准 I/O 操作磁盘文件时,为了减少调用系统调用次数,标准 I/O 函数会将用户写入或读取文件的数据缓存在 stdio 缓冲区,然后再一次性 stdio 缓冲区中缓存的数据通过调用系统调用 I/O (文件 I/O )写入到文件 I/O 内核缓冲区或者拷贝到应用程序的 buf

三种缓冲类型:

_IONBF
不对 I/O 进行缓冲(无缓冲)。意味着每个标准 I/O 函数将立即调用 write() 或者 read()
并且忽略 buf size 参数,可以分别指定两个参数为 NULL 0 。标准错误 stderr 默认属于这一种类型,从而保证错误信息能够立即输出
_IOLBF
采用行缓冲 I/O 。在这种情况下,当在输入或输出中遇到换行符 "\n" 时,标准 I/O 才会执
行文件 I/O 操作。对于输出流,在输出一个换行符前将数据缓存(除非缓冲区已经被填满),当输 出换行符时,再将这一行数据通过文件 I/O write() 函数刷入到内核缓冲区中;对于输入流,每次读取一行数据。对于终端设备默认采用的就是行缓冲模式,譬如标准输入和标准输出。
_IOFBF
采用全缓冲 I/O 。在这种情况下,在填满 stdio 缓冲区后才进行文件 I/O 操作( read write ),对于输出流,当 fwrite 写入文件的数据填满缓冲区时,才调用 write() stdio 缓冲区中的数据刷入内核缓冲区;对于输入流,每次读取 stdio 缓冲区大小个字节数据。默认普通磁盘上的常规文件默认常用这种缓冲模式
刷新stdio缓冲区
int fflush(FILE *stream);强制进行文件的刷新,如果参数是NULL,则刷新所有的stdio缓冲区⚫ 调用 fflush()库函数可强制刷新指定文件的 stdio 缓冲区;
⚫ 调用 fclose()关闭文件时会自动刷新文件的 stdio 缓冲区;
⚫ 程序退出时会自动刷新 stdio 缓冲区(注意区分不同的情况)

I/O缓冲小结:

应用程序调用标准 I/O 库函数将用户数据写入到 stdio 缓冲区中, stdio 缓冲区是
stdio 库所维护的用户空间缓冲区。针对不同的缓冲模式,当满足条件时, stdio 库会调用文件 I/O (系统调用 I/O )将 stdio 缓冲区中缓存的数据写入到内核缓冲区中,内核缓冲区位于内核空间。最终由内核向磁盘设备发起读写操作,将内核缓冲区中的数据写入到磁盘(或者从磁盘设备读取数据到内核缓冲区)

七,文件描述符和FILE指针互转

int fileno(FILE *stream);
将标准 I/O 中使用的 FILE 指针转换为文件 I/O 中所使用的文件描述符成功:文件描述符  失败:NULLFILE *fdopen(int fd, const char *mode);
将文件描述符转换为FILE指针成功:文件指针  失败:NULL

八,linux系统的文件类型

文本文件 :内容由文本构成

二进制文件:.o, .bin文件......

符号链接文件:指向另一个文件的路径

管道文件:进程间通信

套接字文件:不同主机的进程间通信

字符设备文件和块设备文件:硬件设备都会对应一个设备文件

获取文件的属性:stat

int stat(const char *pathname, struct stat *buf);
st_dev :该字段用于描述此文件所在的设备。不常用,可以不用理会。
st_ino :文件的 inode 编号。
st_mode:该字段用于描述文件的模式,譬如文件类型、文件权限都记录在该变量中
st_nlink :该字段用于记录文件的硬链接数,也就是为该文件创建了多少个硬链接文件。链接文件可以
分为软链接(符号链接)文件和硬链接文件
st_uid st_gid :此两个字段分别用于描述文件所有者的用户 ID 以及文件所有者的组 ID
st_rdev :该字段记录了设备号,设备号只针对于设备文件,包括字符设备文件和块设备文件,不用理会。
st_size :该字段记录了文件的大小(逻辑大小),以字节为单位。
st_atim st_mtim st_ctim :此三个字段分别用于记录文件最后被访问的时间、文件内容最后被修改的时间以及文件状态最后被改变的时间,都是 struct timespec 类型变量
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>int main(void)
{struct stat file_stat;int ret;ret = stat("./test.txt",&file_stat);if(-1 ==  ret){perror("open error");exit(-1);}printf("%ld %ld\r\n",file_stat.st_size,file_stat.st_ino);exit(0);}

运行结果:

fstat:相对于stat的区别就是,fstat是从fd去获取文件的属性,而stat是从文件路径获取的

lstat()与 stat、fstat 的区别在于,对于符号链接文件,statfstat 查阅的是符号链接文件所指向的文件对应的文件属性信息

九,文件属主

文件在创建时,其所有者就是创建该文件的那个用户,Linux 下的每一个文件都有与之相关联的用户 ID 和组 ID,

1.有效用户ID和有效组ID

通常,绝大部分情况下,进程的有效用户等于实际用户(有效用户 ID 等于实际用户 ID),有效组等于实际组(有效组 ID 等于实际组 ID)

2.chown函数:改变文件的所属者和所属组

sudo chown root:root testApp.c
int chown(const char *pathname, uid_t owner, gid_t group);pathname:用于指定一个需要修改所有者和所属组的文件路径
owner:将文件的所有者修改为该参数指定的用户(以用户 ID 的形式描述);
group:将文件的所属组修改为该参数指定的用户组(以用户组 ID 的形式描述);
返回值:成功返回 0;失败将返回-1,兵并且会设置 errno
只有超级用户进程能更改文件的用户 ID
普通用户进程可以将文件的组 ID 修改为其所从属的任意附属组 ID ,前提条件是该进程的有效用户 ID 等于文件的用户 ID ;而超级用户进程可以将文件的组 ID 修改为任意值
fchown():通过文件的fd去更改文件           lchown(): 通过文件的链接文件本身的属性去更改文件

3.普通权限和特殊权限

普通权限:

特殊权限:
1. set-user-ID:
进程对文件进行操作的时候、将进行权限检查,如果文件的 set-user-ID 位权限被设置,内核会将 进程的有效 ID 设置为该文件的用户 ID (文件所有者 ID ),意味着该进程直接获取了文件所有者 的权限、以文件所有者的身份操作该文件
2. set-group-ID

进程对文件进行操作的时候、将进行权限检查,如果文件的 set-group-ID 位权限被设置,内核会 将进程的有效用户组 ID 设置为该文件的用户组 ID(文件所属组 ID),意味着该进程直接获取了文件所属组成员的权限、以文件所属组成员的身份操作该文件

3.sticky权限

 注:

Linux 系统下绝大部分的文件都没有设置 set-user-ID 位权限和 set-group-ID 位权限,所以通常情况下, 进程的有效用户等于实际用户(有效用户 ID 等于实际用户 ID),有效组等于实际组(有效组 ID 等于实际组 ID
4.目录权限
相对目录里面的文件进行读取,删除,创建......等操作,必须给目录一定的权限,才可以进行对应的操作

4.检查文件的权限

int access(const char *pathname, int mode);    pathname:文件路径mode:⚫ F_OK:检查文件是否存在
⚫ R_OK:检查是否拥有读权限
⚫ W_OK:检查是否拥有写权限
⚫ X_OK:检查是否拥有执行权限
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>int main(void)
{int ret;ret = access("./test.txt",F_OK);if(-1 == ret){printf("文件不存在/r/n");exit(-1);}ret = access("./test.txt",R_OK);if(!ret){printf("可以读取\r\n");}else{printf("不可以进行读取\r\n");}ret = access("./test.txt",W_OK);if(!ret){printf("可以写入\r\n");}else{printf("不可以进行写入\r\n");}ret = access("./test.txt",X_OK);if(!ret){printf("不可以进行执行\r\n");}else{printf("不可以进行执行\r\n");}return 0;
}

运行结果:

5.chmod修改文件的权限

int chmod(const char *pathname, mode_t mode);pathname:
需要进行权限修改的文件路径,若该参数所指为符号链接,实际改变权限的文件是符号链
接所指向的文件,而不是符号链接文件本身。
mode:
该参数用于描述文件权限,与 open 函数的第三个参数一样,这里不再重述,可以直接使用八进
制数据来描述,也可以使用相应的权限宏(单个或通过位或运算符" | "组合)

fchmod():根据fd进行文件权限的修改         

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>int main(void)
{int ret;ret = chmod("./test.txt", 0777);if(-1 == ret){perror("修改失败");exit(-1);}return 0;
}

  

6.umask函数

文件的实际权限实际上不等于我们设置的权限

mode & ~umask                  eg.   0777 & (~0002) = 0775
mode_t umask(mode_t mask);返回值是旧的mask     参数是 新设定的mask      

十,文件的时间属性

修改时间属性: utime(),utimes()

int utime(const char *filename, const struct utimbuf *times);filename: 文件路径struct utimbuf {time_t actime; /* 访问时间 */time_t modtime; /* 内容修改时间 */
};int utimes(const char *filename, const struct timeval times[2]);filename: 文件路径struct timeval {long tv_sec; /* 秒 */long tv_usec; /* 微秒 */
};相比之下:utimes的精度更高一些,可以更改到微秒级别
int futimens(int fd, const struct timespec times[2]);fd:文件描述符。
times:将时间属性修改为该参数所指定的时间值,times 指向拥有 2 个 struct timespec 结构体类型变量
的数组,数组共有两个元素,第一个元素用于指定访问时间,第二个元素用于指定内容修改时间

#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <sys/types.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#define MY_FILE "./test.txt"
int main(void)
{struct timespec tmsp_arr[2];int ret;int fd;/* 检查文件是否存在 */ret = access(MY_FILE, F_OK);if (-1 == ret) {printf("Error: %s file does not exist!\n", MY_FILE);exit(-1);}/* 打开文件 */fd = open(MY_FILE, O_RDONLY);if (-1 == fd) {perror("open error");exit(-1);}/* 修改文件时间戳 */#if 0ret = futimens(fd, NULL); //同时设置为当前时间#endif#if 1tmsp_arr[0].tv_nsec = UTIME_OMIT;//访问时间保持不变tmsp_arr[1].tv_nsec = UTIME_NOW;//内容修改时间设置为当期时间ret = futimens(fd, tmsp_arr);#endif
}

utimensat()函数: 

int utimensat(int dirfd, const char *pathname, const struct timespec times[2], int flags);dirfd:
该参数可以是一个目录的文件描述符,也可以是特殊值 AT_FDCWD;如果 pathname 参数指定
的是文件的绝对路径,则此参数会被忽略。pathname:
指定文件路径。如果 pathname 参数指定的是一个相对路径、并且 dirfd 参数不等于特殊值
AT_FDCWD,则实际操作的文件路径是相对于文件描述符 dirfd 指向的目录进行解析。如果 pathname 参数
指定的是一个相对路径、并且 dirfd 参数等于特殊值 AT_FDCWD,则实际操作的文件路径是相对于调用进
程的当前工作目录进行解析times:
与 futimens()的 times 参数含义相同flags : 
此参数可以为 0 , 也可以设置为 AT_SYMLINK_NOFOLLOW , 如 果 设 置 为
AT_SYMLINK_NOFOLLOW,当 pathname 参数指定的文件是符号链接,则修改的是该符号链接的时间戳,
而不是它所指向的文件

 十一,符号链接()软链接和硬链接

硬链接:

ls-li   查看当前的硬链接文件个数,源文件本身也是一个硬链接文件

各个硬链接文件的inode指向的是同一个文件

ln 源文件名称  新创建文件名称                         创建硬链接文件

创建硬链接:

int link(const char *oldpath, const char *newpath);

 软链接:

ln -s    源文件名称  新创建文件名称                         创建硬链接文件

当软链接的源文件删除,其余的文件被称为“悬空链接”,原因:软链接文件类似于一种“主从” 关系,软链接内部存着源文件的路径名,当源文件被删除,则无法找到文件路径

创建软链接:

int symlink(const char *target, const char *linkpath);

读取软链接:

ssize_t readlink(const char *pathname, char *buf, size_t bufsiz);buf:存放文件缓冲区bufsiz: 读取的链接文件的大小

 创建和删除目录:

int mkdir(const char *pathname, mode_t mode);int rmdir(const char *pathname);

 打开,读取,关闭目录:

DIR *opendir(const char *name);struct dirent *readdir(DIR *dirp);int closedir(DIR *dirp);

删除文件:

int unlink(const char *pathname);
int remove(const char *pathname);pathname 参数指定的是一个非目录文件,那么 remove()去调用 unlink(),如果 pathname 参数指定的是
一个目录,那么 remove()去调用 rmdir()

十二,文件重命名

int rename(const char *oldpath, const char *newpath);
#include <stdio.h>
#include <stdlib.h>
int main(void)
{int ret;ret = rename("./test", "./test_file");if (-1 == ret) {perror("rename error");exit(-1);}exit(0);
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/211343.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot 项目 Jar 包加密,防止反编译

1场景 最近项目要求部署到其他公司的服务器上&#xff0c;但是又不想将源码泄露出去。要求对正式环境的启动包进行安全性处理&#xff0c;防止客户直接通过反编译工具将代码反编译出来。 2方案 第一种方案使用代码混淆 采用proguard-maven-plugin插件 在单模块中此方案还算简…

调用别人提供的接口无法通过try catch捕获异常(C#),见鬼了

前几天做CA签名这个需求时发现一个很诡异的事情&#xff0c;CA签名调用的接口是由另外一个开发部门的同事(比较难沟通的那种人)封装并提供到我们这边的。我们这边只需要把数据准备好&#xff0c;然后调他封装的接口即可完成签名操作。但在测试过程中&#xff0c;发现他提供的接…

[后端卷前端2]

绑定class 为什么需要样式绑定呢? 因为有些样式我们希望能够动态展示 看下面的例子: <template><div><p :class"{active:modifyFlag}">class样式绑定</p></div> </template><script>export default {name: "goo…

人力资源服务展示网站作用有哪些

就业劳务问题往往是不少人群关注的问题&#xff0c;每个城市都聚集着大量求业者&#xff0c;而人力资源管理公司每年也会新增不少&#xff0c;对求业者来说&#xff0c;通过人力资源公司可以快速便捷的找到所需工作&#xff0c;而对公司来说&#xff0c;市场大量用户可以带来收…

C语言第十八集(动态内存管理)

1.malloc函数可以开辟一块空间,具体搜: 2.malloc函数申请的空间在内存的堆区 而且它只负责帮你申请空间,不负责帮你清理空间 3.free函数可以释放内存 4.free函数释放的是内存中的堆区,具体搜: 5.在free函数调用完后记得把对应的指针设为空指针 6.calloc函数跟malloc函数差…

揭秘字符串的奥秘:探索String类的深层含义与源码解读

文章目录 一、导论1.1 引言&#xff1a;字符串在编程中的重要性1.2 目的&#xff1a;深入了解String类的内部机制 二、String类的设计哲学2.1 设计原则&#xff1a;为什么String类如此重要&#xff1f;2.2 字符串池的概念与作用 三、String类源码解析3.1 成员变量3.2 构造函数3…

[今来] 神话故事:金马和碧鸡

文章目录 金马山和碧鸡山神话传说金马坊和碧鸡坊金马碧鸡 金马山和碧鸡山 昆明山明水秀&#xff0c;北枕蛇山&#xff0c;南临滇池&#xff0c;金马山和碧鸡山则东西夹峙&#xff0c;隔水相对&#xff0c;极尽湖光山色之美。金马山逶迤而玲珑&#xff0c;碧鸡山峭拔而陡峻&…

clickhouse数据库磁盘空间使用率过高问题排查

一、前言 clickhouse天天触发磁盘使用率过高告警&#xff0c;所以需要进行排查&#xff0c;故将排查记录一下。 二、排查过程 1、连接上进入clickhouse 2、执行语句查看各库表使用磁盘情况 SELECT database, table, formatReadableSize(sum(bytes_on_disk)) as disk_space F…

蓝桥杯物联网竞赛_STM32L071_8_ADC扩展模块

原理图&#xff1a; 扩展模块原理图&#xff1a; RP1和RP2分别对应着AIN1和AIN2&#xff0c;扭动它们&#xff0c;其对应滑动变阻器阻值也会变化 实验板接口原理图&#xff1a; 对应实验板接口PB1和PB0 即AN1对应PB1, AN2对应PB0 CubMx配置&#xff1a; ADC通道IN8和IN9才对…

uniApp项目的创建,运行到小程序

一、项目创建 1. 打开 HBuilder X 2. 右击侧边栏点击新建&#xff0c;选择项目 3. 填写项目名&#xff0c;点击创建即可 注&#xff1a;uniapp中如果使用生命周期钩子函数&#xff0c;建议使用哪种 ?(建议使用Vue的) 二、运行 1. 运行前先登录 2. 登录后点击 manifest.js…

基于lambda简化设计模式

前言 虽说使用设计模式可以让复杂的业务代码变得清晰且易于维护&#xff0c;但是某些情况下&#xff0c;开发可能会遇到我为了简单的业务逻辑去适配设计模式的情况&#xff0c;本文笔者就以四种常见的设计模式为例&#xff0c;演示如何基于lambda来简化设计模式的实现。 策略…

WorkPlus高效助力企业沟通的专业级即时通讯软件

在当今高度信息化和全球化竞争的世界&#xff0c;企业需要一个高效便捷的沟通工具来促进团队协作、提高工作效率。在这样的背景下&#xff0c;WorkPlus作为一款专业级的即时通讯软件应运而生。让我们一起深入了解WorkPlus&#xff0c;探讨其在企业沟通中的领先优势和卓越能力。…

平衡二叉树

AVL简称平衡二叉树&#xff0c;缩写为BBST&#xff0c;由苏联数学家 Adelse-Velskil 和 Landis 在 1962 年提出。 二叉树是动态查找的典范&#xff0c;但在极限情况下&#xff0c;二叉树的查找效果等同于链表&#xff0c;而平衡二叉树可以完美的达到 log ⁡ 2 n \log_2 n log2…

ElementPlus table 中嵌套 input 输入框

文章目录 需求分析 需求 vue3 项目中 使用UI组件库 ElementPlus 时&#xff0c;table 中嵌入 input输入框 分析 <template><div class"p-10"><el-table :data"tableData" border><el-table-column prop"date" label&qu…

课堂练习4.1:段式内存管理

4-1 课堂练习4.1&#xff1a;段式内存管理 段式内存管理以段为单位分配内存空间&#xff0c;段内连续&#xff0c;段间可以不连续。段可以很大&#xff0c;比如数据段、代码段、栈段等。本实训分析 Linux 0.11 的段式内存管理技术。 第1关1 号进程 mynext 变量的逻辑地址与线性…

cache教程 3.HTTP服务器

上一节我们实现了单机版的缓存服务&#xff0c;但是我们的目标是分布式缓存。那么&#xff0c;我们就需要把缓存服务部署到多态机器节点上&#xff0c;对外提供访问接口。客户端就可以通过这些接口去实现缓存的增删改查。 分布式缓存需要实现节点间通信&#xff0c;而通信方法…

【面试经典150 | 二叉树】翻转二叉树

文章目录 写在前面Tag题目来源题目解读解题思路方法一&#xff1a;递归方法二&#xff1a;迭代 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法&#xff0c;两到三天更新一篇文章&#xff0c;欢迎催更…… 专栏内容以分析题目为主&#xff0c;并附带一些对于本题…

4-SpringMVC

文章目录 项目源码地址回顾-MVC什么是MVC&#xff1f;MVC各部分组成 回顾-ServletMaven创建Web项目1、创建Maven父工程pom&#xff0c;并导入依赖2、用Maven新建一个Web Module3、代码&#xff1a;HelloServlet.java3、代码-hello.jsp3、代码-web.xml4、配置Tomcat5、浏览器测试…

github使用方法【附安装包】

如果你是一枚Coder&#xff0c;但是你不知道Github&#xff0c;那么我觉的你就不是一个菜鸟级别的Coder&#xff0c;因为你压根不是真正Coder&#xff0c;你只是一个Code搬运工。说明你根本不善于突破自己&#xff01;为什么这么说原因很简单&#xff0c;很多优秀的代码以及各种…

高级系统架构设计师之路

前言&#xff1a;系 统 架 构 设 计 师 (System Architecture Designer)是项目开发活动中的众多角色之 一 &#xff0c;它可 以是 一个人或 一个小组&#xff0c;也可以是一个团队。架构师 (Architect) 包含建筑师、设计师、创造 者、缔造者等含义&#xff0c;可以说&#xff0…