pytorch:YOLOV1的pytorch实现

pytorch:YOLOV1的pytorch实现

注:本篇仅为学习记录、学习笔记,请谨慎参考,如果有错误请评论指出。

参考:
动手学习深度学习pytorch版——从零开始实现YOLOv1
目标检测模型YOLO-V1损失函数详解
3.1 YOLO系列理论合集(YOLOv1~v3)

代码仓库:https://gitee.com/wtryb/yolov1-pytorch-implement
模型权重:链接:https://pan.baidu.com/s/1ZSl-VwkjaRUPuD9CkA6sdg?pwd=blhj
提取码:blhj

YoloV1的预测过程

在这里插入图片描述
上图是作者在原论文Introduction部分对YoloV1检测器系统的大致介绍。对比R-CNN系列,YoloV1的结构相对来说简单很多。Yolo的主要思想就是将识别问题看作是一个回归问题。因为全连接层的存在YoloV1只能接受(448x448)尺寸(分辨率)的图片,因此需要将输入的图片进行resize然后输入到网络中,通过网络进行预测后的结果进行非极大值抑制得到最终结果。

在这里插入图片描述
上图是作者在原论文中Introduction部分对网络预测过程解释的原图。虽然这张图有两个分支,但是是从一个网络中得到两个分支上的结果。网格会将输入图片分成(SxS)个小方格(grid cell),然后在每个小方格上预测边界框和类别概率,最后得到最后的预测结果。YoloV1这种将输入分为小网格的操作和锚框有些相似。

1、网络将输入分成SxS个小网格,S是超参数可以设置不同的值,原论文设置为7,也就是将输入图像分成了7x7个(64x64)的小网格。
2、如果某个对象(Objectness)的中心坐标落在了哪一个网格内,那个网格就负责预测这个物体。网格会预测B个边界框和C个类别概率,边界框数和类别数是超参数,可以设置网格预测多少个边界框原论文是2个以及有多少个类别就有多少个类别概率。而每个边界框会有5个参数:x,y,w,h,c,因此网络最终输出就是(batch, (B*5+C), S,S)。下面说明边界框预测参数的含义。

x , y x,y x,y:边界框的中心相对于网格左上角的坐标偏移。
w , h w,h w,h:边界框相对于整个图像的大小。
c c c:边界框的置信度。

这五个参数的取值范围都是[0,1]。其他四个参数都好理解,主要是C边界框置信度(confidence score)这个参数怎么理解。下面两个问题我认为是关键。
如何理解边界框置信度这个参数?
原论文中说明,边界框置信度(confidence score)就是网络认为网格中存在物体的置信度以及网络对于预测的边界框的准确率。也就是说这个值越高越好,越高越认为这个网格预测到了对象(objectness)而且很准确。
如何计算置信度?
论文中将C定义为了 P r ( O b j e c t ) ∗ I O U p r e d t r u t h Pr\left( Object \right) *IOU_{pred}^{truth} Pr(Object)IOUpredtruth。解释下这两个值的意思:
P r ( O b j e c t ) = { 1 有对象存在 0 无对象存在 Pr\left( Object \right) =\begin{cases} 1& \text{有对象存在}\\ 0& \text{无对象存在}\\ \end{cases} Pr(Object)={10有对象存在无对象存在

I O U p r e d t r u c h : G T 真实边界框与预测边界框的 I O U 值。 IOU_{pred}^{truch}:GT真实边界框与预测边界框的IOU值。 IOUpredtruch:GT真实边界框与预测边界框的IOU值。
那么两个值乘起来也就意味着,如果这个网格有对象存在,置信度就等于GT真实边界框与预测边界框的IOU值,如果没有对象存在就等于0。YoloV1对于采样区域策略以及正负样本区分做的很粗糙,因此训练时C的取值无非就是0和1,GT边界框中心落在哪个网格哪个网格的置信度就取1此外取0。推理预测时,哪个网格的置信度越接近于1,对象中心在那个网格的概率以及边界框预测准确率越高。
总而言之,置信度的取值衡量了,网格对于对象预测的质量,值越高越质量越好。

YoloV1的网络设计

在这里插入图片描述
作者收到GoogleNet的启发,设计了Darknet,其结构如上图所示。随着Yolo系列的迭代,主干网络也在迭代。

YoloV1的损失函数设计

作者在论文中提到使用了平方误差和损失(sum-squared error)因为它易于优化,但是对于最终最大平均精度(maximizing average precision)的目标来说不是很合适,因为它没有区分开定位损失和类别损失,因此作者做了一些修改。下面来进行说明。
1、对正负样本的损失设置权重。在训练时,负样本的数量大大压过正样本,正负样本也就是存在和不存在对象的小网格,这会使得网络难以训练以及造成网络训练时的不稳定。
2、使用宽高的平方根计算损失。平方误差和损失将大边界框和小边界框的误差认为是同等程度的误差,而实际情况是相同的偏移误差对于小边界框影响更大。如下图,黑框是GT边界框,红框是预测边界框,小红框和大红框相对各自的GT边界框的坐标偏移是相同的,从视觉上来看相同的偏移对于小框影响更大。
在这里插入图片描述
3、采用于GT边界框最大IOU的边界框作为预测器。Yolo每个网格生成多个框,但是只采用于GT边界框IOU最大的边界框作为预测器,这种操作使得边界框有了分化,使得边界框在预测特定大小、宽高比、类别时更加准确。

在这里插入图片描述
论文给出的损失函数如图。解释几个参数:

λ c o o r d :取 5 ,正样本的权重 \lambda _{coord}:取5,正样本的权重 λcoord:取5,正样本的权重
λ n o o b j :取 0.5 ,负样本的权重 \lambda _{noobj}:取0.5,负样本的权重 λnoobj:取0.5,负样本的权重
1 i j o b j :第 i 个网格的第 j 个边界框作为预测器时取 1 ,其余取 0 1_{ij}^{obj}:第i个网格的第j个边界框作为预测器时取1,其余取0 1ijobj:第i个网格的第j个边界框作为预测器时取1,其余取0
1 i j n o o b j :第 i 个网格的第 j 个边界框不作为预测器时取1,其余取 0 1_{ij}^{noobj}\text{:第}i\text{个网格的第}j\text{个边界框不作为预测器时取1,其余取}0 1ijnoobj:第i个网格的第j个边界框不作为预测器时取1,其余取0
S :网格的数量 S\text{:网格的数量} S:网格的数量
B :每个网格预测边界框的数量 B\text{:每个网格预测边界框的数量} B:每个网格预测边界框的数量
总体理解下YoloV1的损失函数:
正样本参与位置损失、置信度损失和类别损失的计算,负样本只计算置信度损失,同时为了减弱负样本数量过多的问题给正负样本的损失计算加上了权重。

YoloV1的优缺点

优点:
1、非常快
2、结构简单
缺点:
1、定位误差大
2、区域采样机制设计粗糙

YoloV1的Pytorch实现

1、构建数据集。

使用Pascal VOC2007数据集,这里不再多介绍。YoloV1的输入尺寸固定是(448x448)因此读入图片后需要进行resize,直接resize即可,不需要做其他操作。
VOC2007对于每张图片都有标注文件,读取标注文件中的边界框和类别,按照YoloV1的输出进行编码。

def yolo_encoder(boxes, labels, yolo_config):# print("进入编码器")target = torch.zeros(size= (30, yolo_config["num_grid"], yolo_config["num_grid"]), dtype= torch.float)# print("标签的形状: ", target.shape)cell_size = yolo_config["input_size"] / yolo_config["num_grid"]# print("网格大小:", cell_size)# print(f"一共处理{len(boxes)}个边界框 Boxes:{boxes}")for index, box in enumerate(boxes):# print(f"正在处理第{index+1}个边界框:", box)x_c, y_c, w, h = point_to_center(box)# print("归一化前 x_c, y_c", x_c, y_c)# print("归一化前 w, h", w, h)x_i = math.ceil(x_c // cell_size)y_i = math.ceil(y_c // cell_size)delta_x = float((x_c - x_i * cell_size) / cell_size)delta_y = float((y_c - y_i * cell_size) / cell_size)w = float(w / yolo_config["input_size"])h = float(h / yolo_config["input_size"])# print("物体中心所在网格:", (x_i, y_i))# print("得到边界框偏移:", (delta_x, delta_y))# print("归一化后边界框宽高:", w, h)# print(x_i, y_i)# 前两个值是中心坐标对网格左上角坐标的偏移,归一化到0-1target[0, x_i, y_i] = delta_xtarget[1, x_i, y_i] = delta_y# print("delta_x, delta_y", delta_x, delta_y)target[2, x_i, y_i] = wtarget[3, x_i, y_i] = h# print("w, h", w, h)# 每个网格预测两个边界框,每个边界框的最后一个参数是confidence score因为数据集里是真实框因此为1# 预测到了物体而且就是就是真实框,置信度就是1target[4, x_i, y_i] = 1target[5, x_i, y_i] = delta_xtarget[6, x_i, y_i] = delta_ytarget[7, x_i, y_i] = wtarget[8, x_i, y_i] = htarget[9, x_i, y_i] = 1# 把边界框对应的类在编码中的位置置为1,代表概率是1target[labels[index]+10, x_i, y_i] = 1# print(labels[index])# print("编码结果:", target[:, x_i, y_i])return target
class YoloV1Dataset(Dataset):def __init__(self, path):self.path = path# 从数据集中获取样本# 这个过程耗时很短self.obj_dict_list = pascal_VOC.xml_parse_dict(path)def __getitem__(self, index):# 按照索引获取对应的图片名称self.image_name = self.obj_dict_list[index]["image_name"]# print(self.image_name)# 读取图像img = cv2.imread(os.path.join(self.path, "JPEGImages",self.image_name))# 转换色彩通道img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 按照索引获取边界和对应标号boxes_and_label_list = self.obj_dict_list[index]["boxes"]# print("boxes_and_label_list", boxes_and_label_list)# print(boxes_and_label_list)# 放缩图片同时放缩边界框img, self.boxes = scale_img_with_box(img, [i[0:4] for i in boxes_and_label_list])# print("scale_img_with_box new boxes", self.boxes)self.labels = [i[4] for i in boxes_and_label_list]# self.boxes = [point_to_center(i) for i in self.boxes]# print("point_to_center self.boxes", self.boxes)# print(f"一共有{len(self.boxes)}个边界框")# 通过编码器,编码网络的标签target = yolo_encoder(self.boxes, self.labels, yolo_config)# print(target.shape)# 转换为张量img = transforms.ToTensor()(img)return img, targetdef __len__(self):# 图片的个数return len(self.obj_dict_list)

2、构建YoloV1网络

使用Resnet34代替Darknet主干网络。

from torch import nn
from torchvision.models import resnet34, resnet18
import torchfrom torchsummary import summaryfrom yoloconfig import yolo_configclass yoloV1Resnet(nn.Module):def __init__(self):super(yoloV1Resnet, self).__init__()# 使用预训练#resnet = resnet18(pretrained= True)resnet = resnet34(pretrained=True)# print(resnet)# 记录卷积输出的通道数resnet_out_channels = resnet.fc.in_features# 构造网络,去掉resnet34的全连接层self.feature_extractor = nn.Sequential(*list(resnet.children())[:-2])# 以下是YOLOv1的最后四个卷积层self.Conv_layers = nn.Sequential(nn.Conv2d(resnet_out_channels, 1024, 3, padding=1),nn.BatchNorm2d(1024),  # 为了加快训练,这里增加了BN层,原论文里YOLOv1是没有的nn.LeakyReLU(),nn.Conv2d(1024, 1024, 3, stride=2, padding=1),nn.BatchNorm2d(1024),nn.LeakyReLU(),nn.Conv2d(1024, 1024, 3, padding=1),nn.BatchNorm2d(1024),nn.LeakyReLU(),nn.Conv2d(1024, 1024, 3, padding=1),nn.BatchNorm2d(1024),nn.LeakyReLU(),)# 以下是YOLOv1的最后2个全连接层self.Conn_layers = nn.Sequential(nn.Linear(7 * 7 * 1024, 4096),nn.LeakyReLU(),nn.Linear(4096, 7 * 7 * 30),nn.Sigmoid()  # 增加sigmoid函数是为了将输出全部映射到(0,1)之间,因为如果出现负数或太大的数,后续计算loss会很麻烦)def forward(self, input):input = self.feature_extractor(input)input = self.Conv_layers(input)input = input.view(input.size()[0], -1)input = self.Conn_layers(input)return input.reshape(-1, (5 * yolo_config["num_boxes"] + yolo_config["num_class"]), 7, 7)  # 记住最后要reshape一下输出数据if __name__ == "__main__":if __name__ == '__main__':x = torch.randn((1, 3, 448, 448))net = yoloV1Resnet()print(net)y = net(x)print(y.size())

3、训练网络

from torch.utils.data import DataLoader
import torch
from MyLib.nnTools.Trainer import Trainerfrom network import yolo
from dataprocess import dataset
from network import yololossdef train_model():# PATH = r"E:\Postgraduate_Learning\Python_Learning\DataSets\pascal voc2012\VOCtrainval_11-May-2012\VOCdevkit\VOC2012"PATH = r"E:\Postgraduate_Learning\Python_Learning\DataSets\pascal_voc2007\VOCdevkit\VOC2007"# 定义yolo网络yolo_net = yolo.yoloV1Resnet()yolo_net.load_state_dict(torch.load("models/_keyboardInterrupt_.pth"))# 冻结卷积层的参数for layer in yolo_net.children():layer.requires_grad = Falsebreak# 定义数据集yolo_train_dataset = dataset.YoloV1Dataset(PATH)# 定义数据加载器0yolo_train_iter = DataLoader(dataset= yolo_train_dataset, shuffle= True, batch_size= 4)optimer = torch.optim.SGD(yolo_net.parameters(), lr=1e-3, weight_decay= 0.0005)StepLR = torch.optim.lr_scheduler.StepLR(optimer, step_size=7, gamma=0.65)loss = yololoss.yoloV1Loss()trainer = Trainer()trainer.config_trainer(net= yolo_net, dataloader= yolo_train_iter,optimer= optimer, loss= loss, lr_scheduler= StepLR)trainer.config_task(num_epoch= 60)trainer.start_task(True, "./models")if __name__ == "__main__":train_model()

4、推理预测

YoloV1的网络输出还需要进行一步解码才能获取边界框和类别。

def yolo_decoder(pred, class_name_list, yolo_config, confidence_thr= 0.0002, class_thr= 0.5):boxes = []cell_size = yolo_config["input_size"] / yolo_config["num_grid"]# 循环遍历每个批次for batch in range(pred.shape[0]):# 循环遍历x轴for x in range(yolo_config["num_grid"]):# 循环遍历y轴for y in range(yolo_config["num_grid"]):# 得到类别class_name = class_name_list[torch.argmax(pred[batch, 10:, x, y])]print("class predict", torch.max(pred[batch, 10:, x, y]).item())confidence_box1 = pred[batch, 4, x, y]#  * torch.max(pred[batch, 10:, x, y])confidence_box2 = pred[batch, 9, x, y]#  * torch.max(pred[batch, 10:, x, y])print(f"confidence_box1: {confidence_box1.item()}", f"confidence_box2: {confidence_box2.item()}")# 如果没有物体,跳过if confidence_box1 < confidence_thr or confidence_box2 < confidence_thr:continueif torch.max(pred[batch, 10:, x, y]).item() < class_thr:# print("不符合阈值的box1", pred[batch, 0:5, x, y], "不符合阈值的box1", pred[batch, 6:11, x, y])continue# print(f"有物体存在的网格",x,y)# 判断confidence scores哪个大哪个就是预测器if confidence_box1 >= confidence_box2:box = pred[batch, 0:5, x, y]# print(box)# print(f"解码前结果 box: ", box)box[0] = (box[0] * cell_size + x * cell_size).item()box[1] = (box[1] * cell_size + y * cell_size).item()box[2] = (box[2] * yolo_config["input_size"]).item()box[3] = (box[3] * yolo_config["input_size"]).item()# 转换坐标box_xy = center_to_point(box[0:4])# print(f"解码结果 box: ", box)# print(f"解码结果 class_name: ", class_name)boxes.append((*(box_xy), confidence_box1.item(), class_name))if confidence_box1 < confidence_box2:box = pred[batch, 6:11, x, y]# print(box)# print(f"解码前结果 box: ", box)box[0] = (box[0] * cell_size + x * cell_size).item()box[1] = (box[1] * cell_size + y * cell_size).item()box[2] = (box[2] * yolo_config["input_size"]).item()box[3] = (box[3] * yolo_config["input_size"]).item()# 转换坐标box_xy = center_to_point(box[0:4])# print(f"解码结果 box: ", box)# print(f"解码结果 class_name: ", class_name)boxes.append((*(box_xy), confidence_box2.item(), class_name))# print(box)return boxes
import cv2
import torchimport yoloconfig
from network import yolo
from network.encoder import calculate_iou, yolo_decoder
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
import numpy as npfrom MyLib.imgProcess.draw import cv2_draw_one_boxCOLOR = [(255,0,0),(255,125,0),(255,255,0),(255,0,125),(255,0,250),(255,125,125),(255,125,250),(125,125,0),(0,255,125),(255,0,0),(0,0,255),(125,0,255),(0,125,255),(0,255,255),(125,125,255),(0,255,0),(125,255,125),(255,255,255),(100,100,100),(0,0,0),]  # 用来标识20个类别的bbox颜色,可自行设定
CLASS = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog','horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']def calculate_iou_1(box1, box2):# 计算两个边界框的交集面积x_left = max(box1[0], box2[0])y_top = max(box1[1], box2[1])x_right = min(box1[2], box2[2])y_bottom = min(box1[3], box2[3])if x_right < x_left or y_bottom < y_top:return 0.0intersection_area = (x_right - x_left) * (y_bottom - y_top)box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])iou = intersection_area / float(box1_area + box2_area - intersection_area)return ioudef nms(boxes, threshold):"""非极大值抑制算法(NMS):param boxes: 包含每个边界框的左上角和右下角坐标、置信度和类别的列表:param threshold: 重叠面积阈值:return: 保留的边界框列表"""if len(boxes) == 0:return []# 分别提取边界框的坐标、置信度和类别信息x1 = np.array([box[0] for box in boxes])y1 = np.array([box[1] for box in boxes])x2 = np.array([box[2] for box in boxes])y2 = np.array([box[3] for box in boxes])scores = np.array([box[4] for box in boxes])areas = (x2 - x1 + 1) * (y2 - y1 + 1)# 根据边界框置信度降序排列order = scores.argsort()[::-1]keep = []while len(order) > 0:i = order[0]  # 取出当前置信度最高的边界框keep.append(i)xx1 = np.maximum(x1[i], x1[order[1:]])yy1 = np.maximum(y1[i], y1[order[1:]])xx2 = np.minimum(x2[i], x2[order[1:]])yy2 = np.minimum(y2[i], y2[order[1:]])w = np.maximum(0.0, xx2 - xx1 + 1)h = np.maximum(0.0, yy2 - yy1 + 1)intersection = w * hiou = intersection / (areas[i] + areas[order[1:]] - intersection)inds = np.where(iou <= threshold)[0]order = order[inds + 1]return [boxes[i] for i in keep]if __name__ == '__main__':model = yolo.yoloV1Resnet()# 2023.11.11 定位不准可能是单元格内边界框的置信度误差比较大,导致定位时,定位在了错误的网格#            训练时loss会震荡# 11.12 模型训练loss仍然下不来,可能是数据集太少的原因# 11.13 改小batch继续训练,之前尝试更换主体网络为resnet18不行,减小学习率不行model.load_state_dict(torch.load("models/_keyboardInterrupt_.pth")) # 加载训练好的模型model.eval()model.cuda()img = cv2.imread("./img/000229.jpg")img = cv2.resize(img, (448, 448))inputs = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)inputs = transforms.ToTensor()(inputs)inputs = inputs.to(torch.device("cuda:0"))inputs = torch.unsqueeze(inputs, dim=0)pred = model(inputs)  # pred的尺寸是(1,30,7,7)pred = pred.detach().cpu()# pred = pred.squeeze(dim=0)  # 压缩为(30,7,7)# pred = pred.permute((1, 2, 0))  # 转换为(7,7,30)print(pred[0, 4, :, :])print(pred[0, 9, :, :])boxes = yolo_decoder(pred, CLASS, yolo_config=yoloconfig.yolo_config, confidence_thr=0.1)print("boxes", boxes)box_boxes = []for i in boxes:if i[3] - i[1] <= 10:continueelse:box_boxes.append(i)# print("nms前", box_boxes)new_boxes = nms(box_boxes, 0.3)# print("nms后", new_boxes)for i in new_boxes:# print(i)cv2_draw_one_box(img, i, (255, 0, 255))cv2.imshow("aa", img)cv2.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/211104.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis对象类型检测与命令多态

一. 命令类型 Redis中操作键的命令可以分为两类。 一种命令可以对任意类型的键执行&#xff0c;比如说DEL&#xff0c;EXPIRE&#xff0c;RENAME&#xff0c;TYPE&#xff0c;OBJECT命令等。 举个例子&#xff1a; #字符串键 127.0.0.1:6379> set msg "hello world&…

第76讲:MySQL数据库中常用的命令行工具的基本使用

文章目录 1.mysql客户端命令工具2.mysqladmin管理数据库的客户端工具3.mysqlbinlog查看数据库中的二进制日志4.mysqlshow统计数据库中的信息5.mysqldump数据库备份工具6.mysqllimport还原备份的数据7.source命令还原SQL类型的备份文件 MySQL数据库提供了很多的命令行工具&#…

python 画条形图(柱状图)

目录 前言 基础介绍 月度开支的条形图 前言 条形图&#xff08;bar chart&#xff09;&#xff0c;也称为柱状图&#xff0c;是一种以长方形的长度为变量的统计图表&#xff0c;长方形的长度与它所对应的变量数值呈一定比例。 当使用 Python 画条形图时&#xff0c;通常会使…

vscode 编译运行c++ 记录

一、打开文件夹&#xff0c;新建或打开一个cpp文件 二、ctrl shift p 进入 c/c配置 进行 IntelliSense 配置。主要是选择编译器、 c标准&#xff0c; 设置头文件路径等&#xff0c;配置好后会生成 c_cpp_properties.json&#xff1b; 二、编译运行&#xff1a; 1、选中ma…

zabbix 通过 odbc 监控 mssql

1、环境 操作系统&#xff1a;龙蜥os 8.0 zabbix&#xff1a;6.0 mssql&#xff1a;2012 2、安装odbc 注意&#xff1a;需要在zabbix server 或者 zabbix proxy 安装 odbc驱动程序 dnf -y install unixODBC unixODBC-devel3、安装mssql驱动程序 注意&#xff1a;我最开始尝试…

Tomcat管理功能使用

前言 Tomcat管理功能用于对Tomcat自身以及部署在Tomcat上的应用进行管理的web应用。在默认情况下是处于禁用状态的。如果需要开启这个功能&#xff0c;需要配置管理用户&#xff0c;即配置tomcat-users.xml文件。 &#xff01;&#xff01;&#xff01;注意&#xff1a;测试功…

react 学习笔记 李立超老师 | (学习中~)

文章目录 react学习笔记01入门概述React 基础案例HelloWorld三个API介绍 JSXJSX 解构数组 创建react项目(手动)创建React项目(自动) | create-react-app事件处理React中的CSS样式内联样式 | 内联样式中使用state (不建议使用)外部样式表 | CSS Module React组件函数式组件和类组…

不同品牌的手机如何投屏到苹果MacBook?例如小米、华为怎样投屏比较好?

习惯使用apple全家桶的人当然知道苹果手机或iPad可以直接用airplay投屏到MacBook。 但工作和生活的多个场合里&#xff0c;并不是所有人都喜欢用同一品牌的设备&#xff0c;如果同事或同学其他品牌的手机需要投屏到MacBook&#xff0c;有什么方法可以快捷实现&#xff1f; 首先…

【GDB】

GDB 1. GDB调试器1.1 前言1.2 GDB编译程序1.3 启动GDB1.4 载入被调试程序1.5 查看源码1.6 运行程序1.7 断点设置1.7.1 通过行号设置断点1.7.2 通过函数名设置断点1.7.3 通过条件设置断点1.7.4 查看断点信息1.7.5 删除断点 1.8 单步调试1.9 2. GDB调试core文件2.1 设定core文件的…

(五)五种最新算法(SWO、COA、LSO、GRO、LO)求解无人机路径规划MATLAB

一、五种算法&#xff08;SWO、COA、LSO、GRO、LO&#xff09;简介 1、蜘蛛蜂优化算法SWO 蜘蛛蜂优化算法&#xff08;Spider wasp optimizer&#xff0c;SWO&#xff09;由Mohamed Abdel-Basset等人于2023年提出&#xff0c;该算法模型雌性蜘蛛蜂的狩猎、筑巢和交配行为&…

iOS(swiftui)——系统悬浮窗( 可在其他应用上显示,可实时更新内容)

因为ios系统对权限的限制是比较严格的,ios系统本身是不支持全局悬浮窗(可在其他app上显示)。在iphone14及之后的iPhone机型中提供了一个叫 灵动岛的功能,可以在手机上方可以添加一个悬浮窗显示内容并实时更新,但这个功能有很多局限性 如:需要iPhone14及之后的机型且系统…

Java面试遇到的一些常见题

目录 1. Java语言有几种基本类型&#xff0c;分别是什么&#xff1f; 整数类型&#xff08;Integer Types&#xff09;&#xff1a; 浮点类型&#xff08;Floating-Point Types&#xff09;&#xff1a; 字符类型&#xff08;Character Type&#xff09;&#xff1a; 布尔类…

(六)五种最新算法(SWO、COA、LSO、GRO、LO)求解无人机路径规划MATLAB

一、五种算法&#xff08;SWO、COA、LSO、GRO、LO&#xff09;简介 1、蜘蛛蜂优化算法SWO 蜘蛛蜂优化算法&#xff08;Spider wasp optimizer&#xff0c;SWO&#xff09;由Mohamed Abdel-Basset等人于2023年提出&#xff0c;该算法模型雌性蜘蛛蜂的狩猎、筑巢和交配行为&…

【完整项目】双模式答题卡识别软件中YOLO模式的训练部分详解,包括训练填涂区域和手写准考证号,手把手详细教学,可延申拓展训练其他图像数据

目录 前言1. 数据准备2. 数据标注3. 先跑起来Windows下用本地的CPU或GPU训练本地Windows系统连接服务器训练前言 前文:【完整项目】基于Python+Tkinter+OpenCV+Yolo+手写OCR的双模式答题卡识别软件的设计与实现 如果你需要训练自己的答题卡模型,那么请先看上面的文章链接。…

Flutter自定义下拉选择框dropDownMenu

利用PopupMenuButton和PopupMenuItem写了个下拉选择框&#xff0c;之所以不采用系统的&#xff0c;是因为自定义的更能适配项目需求&#xff0c;话不多说&#xff0c;直接看效果 下面直接贴出代码、代码中注释写的都很清楚&#xff0c;使用起来应该很方便&#xff0c;如果有任何…

OpenSSL 编程指南

目录 前言初始化SSL库创建SSL 上下文接口(SSL_CTX)安装证书和私钥加载证书(客户端/服务端证书)加载私钥/公钥加载CA证书设置对端证书验证例1 SSL服务端安装证书例2 客户端安装证书创建和安装SSL结构建立TCP/IP连接客户端创建socket服务端创建连接创建SSL结构中的BIOSSL握手服务…

Scrum

Scrum是一个用于开发和维持复杂产品的框架&#xff0c;是一个增量的、迭代的开发过程。在这个框架中&#xff0c;整个开发过程由若干个短的迭代周期组成&#xff0c;一个短的迭代周期称为一个Sprint&#xff0c;每个Sprint的建议长度是2到4周(互联网产品研发可以使用1周的Sprin…

【Linux】输出缓冲区和fflush刷新缓冲区

目录 一、输出缓冲区 1.1 输出缓冲区的使用 1.2 缓冲区的刷新 1.3 输出缓冲区的作用 二、回车换行 一、输出缓冲区 C/C语言&#xff0c;当调用输出函数&#xff08;如printf()、puts()、fwrite()等&#xff09;时&#xff0c;会给我们提供默认的缓冲区。这些数据先存…

虚拟机安装 hyper—v 沙盒

一、下载系统镜像 1、确认电脑内存在8G及以上并提前准备完整的系统镜像 安装Hyper-V并重启电脑后打开程序选择虚拟机 选择安装位置并设置保留第一代的虚拟参数即可开始分配内存&#xff0c;根据自己的需求进行设置 右键虚拟机启动并开始运行&#xff0c;进行镜像系统的安装便完…

牛客算法心得——环形数组的连续子数组最大和(dp)

大家好&#xff0c;我是晴天学长&#xff0c; 一个找连续子数组最大和的变形题&#xff0c;需要的小伙伴可以关注支持一下哦&#xff01;后续会继续更新的。&#x1f4aa;&#x1f4aa;&#x1f4aa; 1) .环形数组的连续子数组的最大和 描述 给定一个长度为 nn 的环形整数数组&…