在OpenCV基于深度学习的超分辨率模型实践

1. 引言

OpenCV是一个开源的计算机视觉库,拥有大量优秀的算法。基于最新的合并,OpenCV包含一个易于使用的接口,主要用于实现基于深度学习方法的超分辨率(SR)。该接口包含预先训练的模型,这些模型可以非常容易和有效地用于推理。在这篇文章中,我将解释它可以做什么,并逐步展示如何使用它。

闲话少说,我们直接开始吧!

2. 版本说明

首先我们的第一步是安装OpenCV库。一些功能都是在逐渐发布,所以需要注意版本:4.2.0用于C++,4.3.0添加Python接口,4.4.0添加GPU推理。大家可以按照OpenCV文档中的说明进行相应的操作。大家注意安装contrib模块,因为这是SR接口代码所在的位置。本文中我们将使用的接口或模块称为dnn_superres(dnn代表深度神经网络;superres代表超分辨率)。

3. 模型下载

接着我们需要单独下载预先训练好的模型,因为OpenCV代码库不包含它们。原因是有些模型相当大。这里有几种模型可供选择,所有这些模型都是流行SR论文中的实现。现在,让我们选择一个小模型,大家可以在这里下载。

4. 实践

我们在Python中可以通过以下代码进行相应的实现:


import cv2
from cv2 import dnn_superres# Create an SR object
sr = dnn_superres.DnnSuperResImpl_create()# Read image
image = cv2.imread('./input.png')# Read the desired model
path = "EDSR_x3.pb"
sr.readModel(path)# Set the desired model and scale to get correct pre- and post-processing
sr.setModel("edsr", 3)# Upscale the image
result = sr.upsample(image)# Save the image
cv2.imwrite("./upscaled.png", result)

代码相对简单,参考相应的注释即可。

5. 推荐模型

目前在OpenCV中主要支持4种不同的SR模型。它们都可以按2、3和4的比例放大图像。LapSRN甚至可以升级8倍。它们在准确性、大小和速度上各不相同。

  • EDSR: 这是目前表现最好的模型。然而,它也是参数量最大的模型,因此具有最大的文件大小和最慢的推理。大家可以在这里下载。

  • ESPCN: 这是一个相对较小的模型,具有快速和良好的推理能力。它可以进行实时视频放大(取决于图像大小)。大家可以在这里下载。

  • FSRCNN: 这也是一个具有快速准确推理的小模型。还可以进行实时视频放大。大家可以在这里下载。

  • LapSRN: 这是一款中等大小的模型,可以提升8倍分辨率。大家可以在这里下载。

有关这些模型的更多信息和实现,请参阅模块的GitHub中的ReadME文件。关于上述模型的基准和比较,请访问此处。

6. 具体实例

接着让我们看具体实例如下:(如果在移动设备上查看,建议放大后进行直观的对比)

输入图像如下:
在这里插入图片描述
双线性插值放大三倍后的图像如下:
在这里插入图片描述
使用模型FSRCNN放大三倍后的效果如下:
在这里插入图片描述
使用模型ESDR放大三倍后的效果如下:
在这里插入图片描述
正如大家所看到的,这些模型产生了令人非常满意的结果,特别是EDSR给出了惊人的结果,尽管它有点慢(几秒钟的推理时间),但是绝对值得等待。大家可以自己试试!

7. 注意事项

事实上,在上述具体实现中,有以下几点注意事项:

  • 如果在使用.jpg图像时出现错误,请尝试切换到.png格式

  • 确保大家的setModel()中的参数与大家在readModel()中使用的模型匹配。

  • 尝试不同的模型,在速度和性能方面获得不同的结果。

  • 如果大家想使用GPU进行推理(默认是CPU),大家可以在读入模型后将后端设置为CUDA。这是一个新的特性,因此大家需要4.4.0版本。请参阅相关的拉取请求。部门代码参考如下:

path = "EDSR_x3.pb"
sr.readModel(path)# Set CUDA backend and target to enable GPU inference
sr.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
sr.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)

8. 总结

本文重点介绍了在OpenCV中,利用深度学习的方法来进行超分辨率的实现,被给出了具体的代码实例,和几种常用的模型。

您学废了吗?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/210769.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

redis中使用事务保护数据完整性

事务是指一个执行过程,要么全部执行成功,要么失败什么都不改变。不会存在一部分成功一部分失败的情况,也就是事务的ACID四大特性(原子性、一致性、隔离性、持久性)。但是redis中的事务并不是严格意义上的事务&#xff…

智能优化算法应用:基于蝗虫算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蝗虫算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于蝗虫算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蝗虫算法4.实验参数设定5.算法结果6.参考文献7.MA…

持续集成交付CICD:使用Maven命令上传Nexus制品

目录 一、实验 1.使用Maven命令上传Nexus制品(第一种方式) 2.使用Maven命令上传Nexus制品(第二种方式) 一、实验 1.使用Maven命令上传Nexus制品(第一种方式) (1)指定一个 hoste…

Flutter视频播放器在iOS端和Android端都能实现全屏播放

Flutter开发过程中,对于视频播放的三方组件有很多,在Android端适配都挺好,但是在适配iPhone手机的时候,如果设置了UIInterfaceOrientationLandscapeLeft和UIInterfaceOrientationLandscapeRight都为false的情况下,无法…

基于PaddleOCR银行卡识别实现(四)之uni-app离线插件

目的 在前三篇文章中完成了银行卡识别整个模型训练等工作,通过了解PaddleOCR的端侧部署,我们也可以将银行卡号检测模型和识别模型移植到手机中,做成一款uni-app手机端离线银行卡号识别的应用。 准备工作 为了不占用过多篇幅,这…

Nginx的性能优化、安全以及防盗链配置

目录 一、nginx的日志分割 二、nginx性能优化之启用epoll模型 三、nginx性能优化之设置worker进程数并与cpu进行绑核 四、nginx性能优化之调整worker的最大打开文件数和最大处理连接请求数量 五、nginx性能优化之启用gzip压缩,提高传输,减少带宽 六…

字节iconpark基于vue使用

1.安装 npm i icon-park/vue 2.导入 说明:导入并在main.js使用。 import { install } from icon-park/vue/es/all; import icon-park/vue/styles/index.css; Vue.use(install) 3.打开官网 ByteDance IconPark 4.复制 说明:点击官方图标库&#xff0c…

Java-JDBC操作MySQL

Java-JDBC操作MySQL 文章目录 Java-JDBC操作MySQL一、Java-JDBC-MySQL的关系二、创建连接三、登录MySQL四、操作数据库1、返回型操作2、无返回型操作 练习题目及完整代码 一、Java-JDBC-MySQL的关系 #mermaid-svg-B7qjXrosQaCOwRos {font-family:"trebuchet ms",verd…

国产Type-C PD芯片—接口快充取电芯片

常用USB PDTYPE-C受电端,即设备端协议IC芯片(PD Sink,也叫PD诱骗芯片),诱导取电芯片。 产品介绍 LDR6328: ◇ 采用 SOP-8 封装 ◇ 兼容 USB PD 3.0 规范,支持 USB PD 2.0 ◇ 兼容 QC 3.0 规范&#x…

TailwindCSS 支持文本文字超长溢出截断、文字文本省略号

前言 文本文字超长截断并自动补充省略号,这是前端日常开发工作中常用的样式设置能力,文字超长截断主要分为单行超长截断和多行超长截断。本文通过介绍基本CSS样式、tailwindcss 类设置两种基础方式来实现文字超长截断。 TailwindCSS 设置 单行文字超长…

WPF仿网易云搭建笔记(2):组件化开发

文章目录 前言专栏和Gitee仓库依赖属性实战:缩小,全屏,关闭按钮依赖属性操作封装主窗口传递this本身给TitleView标题控件主要代码MainWindow.xmalMainWindow.cs依赖属性方法封装TitleView.csTitleViewModelTitleViewModel实现效果 前言 这次…

【刷题】位运算

2 n 2^n 2n 1<<n判断某一位是否为1 s&1<<k将上面两个组合&#xff0c;可以得到判断一个集合中哪些内容包含&#xff0c;遍历所有情况。 100140. 关闭分部的可行集合数目 一个公司在全国有 n 个分部&#xff0c;它们之间有的有道路连接。一开始&#xff0c;…

CentOS 7 离线安装达梦数据库8.0

前期准备工作 确认操作系统的版本和数据库的版本是否一致 ## 查看系统版本&#xff1a;cat /etc/redhat-release CentOS Linux release 7.5.1804 (Core)关闭防火墙和Selinux # 查看selinux是不是disabled / enforce cat /etc/selinux/config## 查看防火墙状态 firewall-cmd …

数据结构之归并排序及排序总结

目录 归并排序 归并排序的时间复杂度 排序的稳定性 排序总结 归并排序 归并排序大家只需要掌握其递归方法即可&#xff0c;非递归方法由于在某些特殊场景下边界难控制&#xff0c;我们一般很少使用非递归实现归并排序。那么归并排序的递归方法我们究竟是怎样实现呢&#xff…

PHP医院手术麻醉系统源码,laravel、vue2 、mysql技术开发,自主知识产权,二开快捷

医院手术麻醉系统全套源码&#xff0c;有演示&#xff0c;自主知识产权 技术架构&#xff1a;PHP、 js 、mysql、laravel、vue2 手术麻醉临床信息管理系统是数字化手段应用于手术过程中的重要组成部分&#xff0c;用数字形式获取并存储手术相关信息&#xff0c;既便捷又高效。…

每日一练2023.12.10—— 倒数第N个字符串【PTA】

题目链接&#xff1a;L1-050 倒数第N个字符串 题目要求&#xff1a; 给定一个完全由小写英文字母组成的字符串等差递增序列&#xff0c;该序列中的每个字符串的长度固定为 L&#xff0c;从 L 个 a 开始&#xff0c;以 1 为步长递增。例如当 L 为 3 时&#xff0c;序列为 { a…

Qt Creator设置IDE的字体、颜色、主题样式

Qt是一款开源的、跨平台的C开发框架&#xff0c;支持Windows、Linux、Mac系统&#xff0c;从1995发布第一版以来&#xff0c;发展迅猛&#xff0c;最开始是用于Nokia手机的Symbian(塞班)系统和应用程序开发&#xff0c;现在是用于嵌入式软件、桌面软件(比如WPS、VirtualBox)、A…

【图论笔记】克鲁斯卡尔算法(Kruskal)求最小生成树

【图论笔记】克鲁斯卡尔算法&#xff08;Kruskal&#xff09;求最小生成树 适用于 克鲁斯卡尔适合用来求边比较稀疏的图的最小生成树 简记&#xff1a; 将边按照升序排序&#xff0c;选取n-1条边&#xff0c;连通n个顶点。 添加一条边的时候&#xff0c;如何判断能不能添加…

Python实现PDF-Excel

轻松解决PDF格式转Excel&#xff08;使用python实现&#xff09; 实现思路&#xff1a; 要将PDF转换为Excel&#xff0c;可以使用以下步骤&#xff1a; 解析PDF内容&#xff1a;首先&#xff0c;需要使用Python中的第三方库&#xff08;如PyPDF2、pdfminer等&#xff09;来解…

西南科技大学C++程序设计实验十二(文件流操作)

一、实验目的 1. 熟悉文件的基本操作; 2. 在类中添加打开文件、保存文件、读取文件等处理函数; 二、实验任务 1. 分析完善程序:主函数创建一个文件对象,每次打开文件,在其尾部添加数据。如果文件不存在,则新建该文件。请将空白处需要完善的功能补充完整。 #include …