智能优化算法应用:基于鲸鱼算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于鲸鱼算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于鲸鱼算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.鲸鱼算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用鲸鱼算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.鲸鱼算法

鲸鱼算法原理请参考:https://blog.csdn.net/u011835903/article/details/107559167
鲸鱼算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

鲸鱼算法参数如下:

%% 设定鲸鱼优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明鲸鱼算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/210212.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python-pdf工具自制(合并、拆分、删除)

pdf工具,之前写的合并工具有点麻烦,使用PyQt5库重写合并拆分和删除指定页面的程序 实现如图: 代码: import sysimport osfrom PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QVBoxLayout, QWidget, QFileDia…

unity 2d 入门 飞翔小鸟 Cinemachine 记录分数(十二)

1、创建文本 右键->create->ui->leagcy->text 2、设置字体 3、设置默认值和数字 4、当切换分辨率,分数不见问题 拖拽这里调整 调整到如下图 5、编写得分脚本 using System.Collections; using System.Collections.Generic; using UnityEngine; …

Docker网络架构介绍

本文主要介绍了Docker容器的单机网络架构与集群网络架构,辅以演示,并简单介绍了网络管理中的命令。 前文: Docker的安装与简单操作命令-CSDN博客 docker网络原理介绍 与ovs类似,docker容器采用veth-pair linux bridge (虚拟交…

0007Java程序设计-ssm基于微信小程序的在线考试系统

文章目录 **摘要**目 录系统实现开发环境 编程技术交流、源码分享、模板分享、网课分享 企鹅🐧裙:776871563 摘要 网络技术的快速发展给各行各业带来了很大的突破,也给各行各业提供了一种新的管理技术,基于微信小程序的在线考试…

Linux下apisix离线安装教程

Linux下apisix离线安装教程 一、首先需要安装etcd:二、通过rpm离线安装apisix三、启动apisix四、安装apisix-dashboard1、安装2、更改dashboard登录账号名和密码3、运行 一、首先需要安装etcd: 解压缩etcd后执行以下命令: tar -xvf etcd-v3.…

C#注册表技术及操作

目录 一、注册表基础 1.Registry和RegistryKey类 (1)Registry类 (2)RegistryKey类 二、在C#中操作注册表 1.读取注册表中的信息 (1)OpenSubKey()方法 (2)GetSubKeyNames()…

内外联动——记建行江门鹤山支行营业部堵截一起新型骗局

建设银行广东省江门市分行(以下简称“江门建行”)认真贯彻落实党中央、国务院决策部署,紧紧围绕当地市委工作部署和上级行要求,扛牢国有大行责任,坚守金融工作的政治性、人民性,以深化新金融行动助力江门全…

javascript实现List列表数据结构

书籍推荐 有幸拜读《数据结构与算法Javascript描述》这本书,先强烈安利一波!非常感谢作者大大给我们前端领域带来这本书。 全书从javascript的角度出发,简单明了的分析了数据结构在javascript领域的实现过程与实际的应用案例,且…

Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.

报错: OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized. OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performan…

差异计算基础知识 - 了解期末业务操作、WIP 和差异

原文地址:Basics of variance calculation-Understanding Period End activities, WIP and Variances | SAP Blogs 大家好, 这是我在成本核算方面的第六份文件,旨在解释期末的差异计算和相关活动。 我将引导您完成期末活动和差异计算。在本文…

【性能测试】Jmeter 配置元件(一):计数器

Jmeter 配置元件(一):计数器 在 Jmeter 中,通过函数 ${__counter(,)} 可以实现每次加 1 1 1 的计数效果。但如果步长不为 1 1 1,则要利用到我们的计数器。 函数作用${__counter(,)}计数器,每次加 1${__d…

论文导读|10月MSOM文章精选:智慧医疗

编者按 在“10月MSOM文章精选:智慧医疗”中,我们有主题、有针对性地选择了MSOM期刊杂志中一些有关智慧医疗领域的有趣文章,不但对文章的内容进行了概括与点评,而且也对文章的结构进行了梳理,旨在激发广大读者的阅读兴趣…

c++--面向对象特性

1.面向对象指的是继承,封装,多态。 继承主要关注类的构造,赋值,析构。 以下对多态,封装进行补充说明。 2、多态 2.1.定义 a.赋值 派生类的指针,可以赋值给基类的指针。 派送类的对象,可以赋值给…

教师需要什么技能?

作为一名老师,需要掌握许多技能,以便能够成功地教育和指导学生。以下是一些关键技能: 1.教学技能:老师需要有深入的学科知识和教学经验,以便能够有效地传授知识。教师应该了解如何设计和执行教学计划,制定课…

【Java基础篇 | 面向对象】—— 聊聊什么是接口(下篇)

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【JavaSE_primary】 本专栏旨在分享学习JavaSE的一点学习心得,欢迎大家在评论区交流讨论💌 上篇(【Ja…

SpringBoot 自动装配原理详解

什么是 SpringBoot 自动装配? 我们现在提到自动装配的时候,一般会和 Spring Boot 联系在一起。但是,实际上 Spring Framework 早就实现了这个功能。Spring Boot 只是在其基础上,通过 SPI 的方式,做了进一步优化。 Spr…

解决npm install时报:gyp ERR! configure error

报错内容: npm ERR! gyp ERR! cwd C:\Users\zccbbg\code\my\examvue\node_modules\node-sass npm ERR! gyp ERR! node -v v16.13.1 npm ERR! gyp ERR! node-gyp -v v3.8.0 npm ERR! gyp ERR! not ok npm ERR! Build failed with error code: 1 解决办法:…

自行编写一个简单的shell!

本文旨在编写一个简单的shell外壳程序!功能类似于shell的一些基本操作!虽然不能全部实现shell的一些功能!但是通过此文章,自己写一个简单的shell程序也是不成问题!并且通过此文章,可以让读者对linux中一些环…

C#基础面试题集

C#基础 1. 简述值类型和引用类型有什么区别2. C# String类型比 stringBuilder 类型的优势是什么?3.面向对象的三大特点4.请简述private,public,protected,internal的区别5.结构体和类6.请描述Interface与抽象类之间的不同7.在类的构造函数前…

go自带rpc框架生产环境使用demo

基础使用 序列化使用自带gob协议 server package mainimport ("net""net/rpc" )// 定义一个handler结构体 type HelloService struct { }// 定义handler方法,大小写,参数,返回值都是固定的,否则无法注册 func (receiv…