docker资源限制

目录

系统压力测试工具stress

1. cpu资源限制

1.1 限制CPU Share

1.2 限制CPU 核数

1.3 CPU 绑定

2. mem资源限制

3. 限制IO

二、端口转发

三、容器卷

四、部署centos7容器应用

五、docker数据存储位置

六、docker网络

容器网络分类


在使用 docker 运行容器时,一台主机上可能会运行几百个容器,这些容器虽然互相隔离,但是底层却使用着相同的 CPU、内存和磁盘资源。如果不对容器使用的资源进行限制,那么容器之间会互相影响,小的来说会导致容器资源使用不公平;大的来说,可能会导致主机和集群资源耗尽,服务完全不可用。

CPU 和内存的资源限制已经是比较成熟和易用,能够满足大部分用户的需求。磁盘限制也是不错的,虽然现在无法动态地限制容量,但是限制磁盘读写速度也能应对很多场景。

至于网络,docker 现在并没有给出网络限制的方案,也不会在可见的未来做这件事情,因为目前网络是通过插件来实现的,和容器本身的功能相对独立,不是很容易实现,扩展性也很差。

资源限制一方面可以让我们为容器(应用)设置合理的 CPU、内存等资源,方便管理;另外一方面也能有效地预防恶意的攻击和异常,对容器来说是非常重要的功能。

系统压力测试工具stress

stress是一个linux下的压力测试工具,专门为那些想要测试自己的系统,完全高负荷和监督这些设备运行的用户。

1. cpu资源限制

1.1 限制CPU Share

什么是cpu share:

docker 允许用户为每个容器设置一个数字,代表容器的 CPU share,默认情况下每个容器的 share 是 1024。这个 share 是相对的,本身并不能代表任何确定的意义。当主机上有多个容器运行时,每个容器占用的 CPU 时间比例为它的 share 在总额中的比例。docker 会根据主机上运行的容器和进程动态调整每个容器使用 CPU 的时间比例。

例子:

  如果主机上有两个一直使用 CPU 的容器(为了简化理解,不考虑主机上其他进程),其 CPU share 都是 1024,那么两个容器 CPU 使用率都是 50%;如果把其中一个容器的 share 设置为 512,那么两者 CPU 的使用率分别为 67% 和 33%;如果删除 share 为 1024 的容器,剩下来容器的 CPU 使用率将会是 100%。

好处:

 能保证 CPU 尽可能处于运行状态,充分利用 CPU 资源,而且保证所有容器的相对公平;

缺点:

 无法指定容器使用 CPU 的确定值。 

设置 CPU share 的参数:

 -c --cpu-shares,它的值是一个整数

我的机器是 4 核 CPU,因此运行一个stress容器,使用 stress 启动 4 个进程来产生计算压力:(无CPU限制)

[root@yixuan ~]# docker pull progrium/stress
[root@yixuan ~]# yum install -y htop
[root@yixuan ~]# docker run --rm -it progrium/stress --cpu 4
stress: info: [1] dispatching hogs: 4 cpu, 0 io, 0 vm, 0 hdd
stress: dbug: [1] using backoff sleep of 12000us
stress: dbug: [1] --> hogcpu worker 4 [6] forked
stress: dbug: [1] using backoff sleep of 9000us
stress: dbug: [1] --> hogcpu worker 3 [7] forked
stress: dbug: [1] using backoff sleep of 6000us
stress: dbug: [1] --> hogcpu worker 2 [8] forked
stress: dbug: [1] using backoff sleep of 3000us
stress: dbug: [1] --> hogcpu worker 1 [9] forked

在另外一个 terminal 使用 htop 查看资源的使用情况:

1570424556113

上图中看到,CPU 四个核资源都达到了 100%。

为了比较,另外启动一个 share 为 512 的容器:

1.先将没有做限制的命令运行起来
[root@yixuan ~]# docker run --rm -it progrium/stress --cpu 4
2.在开启一个终端,运行做了CPU限制的命令
[root@yixuan ~]# docker run --rm -it -c 512 progrium/stress --cpu 4
stress: info: [1] dispatching hogs: 4 cpu, 0 io, 0 vm, 0 hdd
stress: dbug: [1] using backoff sleep of 12000us
stress: dbug: [1] --> hogcpu worker 4 [6] forked
stress: dbug: [1] using backoff sleep of 9000us
stress: dbug: [1] --> hogcpu worker 3 [7] forked
stress: dbug: [1] using backoff sleep of 6000us
stress: dbug: [1] --> hogcpu worker 2 [8] forked
stress: dbug: [1] using backoff sleep of 3000us
stress: dbug: [1] --> hogcpu worker 1 [9] forked
3.在开启一个终端执行htop命令
[root@yixuan ~]# htop

因为默认情况下,容器的 CPU share 为 1024,所以这两个容器的 CPU 使用率应该大致为 2:1,下面是启动第二个容器之后的监控截图:

1570425017249

两个容器分别启动了四个 stress 进程,第一个容器 stress 进程 CPU 使用率都在 60% 左右,第二个容器 stress 进程 CPU 使用率在 30% 左右,比例关系大致为 2:1,符合之前的预期。

1.2 限制CPU 核数

限制容器能使用的 CPU 核数

-c --cpu-shares 参数只能限制容器使用 CPU 的比例,或者说优先级,无法确定地限制容器使用 CPU 的具体核数;从 1.13 版本之后,docker 提供了 --cpus 参数可以限定容器能使用的 CPU 核数。这个功能可以让我们更精确地设置容器 CPU 使用量,是一种更容易理解也因此更常用的手段.
--cpus 后面跟着一个浮点数,代表容器最多使用的核数,可以精确到小数点二位,也就是说容器最小可以使用 0.01 核 CPU。

限制容器只能使用 1.5 核数 CPU:

[root@yixuan ~]# docker run --rm -it --cpus 1.5 progrium/stress --cpu 3
stress: info: [1] dispatching hogs: 3 cpu, 0 io, 0 vm, 0 hdd
stress: dbug: [1] using backoff sleep of 9000us
stress: dbug: [1] --> hogcpu worker 3 [6] forked
stress: dbug: [1] using backoff sleep of 6000us
stress: dbug: [1] --> hogcpu worker 2 [7] forked
stress: dbug: [1] using backoff sleep of 3000us
stress: dbug: [1] --> hogcpu worker 1 [8] forked

在容器里启动三个 stress 来跑 CPU 压力,如果不加限制,这个容器会导致 CPU 的使用率为 300% 左右(也就是说会占用三个核的计算能力)。实际的监控如下图:

img

可以看到,每个 stress 进程 CPU 使用率大约在 50%,总共的使用率为 150%,符合 1.5 核的设置。

如果设置的 --cpus 值大于主机的 CPU 核数,docker 会直接报错:

[root@yixuan ~]# docker run --rm -it --cpus 8 progrium/stress --cpu 3  #启用三个进程做测试
docker: Error response from daemon: Range of CPUs is from 0.01 to 4.00, as there are only 4 CPUs available.
See 'docker run --help'.

如果多个容器都设置了 --cpus ,并且它们之和超过主机的 CPU 核数,并不会导致容器失败或者退出,这些容器之间会竞争使用 CPU,具体分配的 CPU 数量取决于主机运行情况和容器的 CPU share 值。也就是说 --cpus 只能保证在 CPU 资源充足的情况下容器最多能使用的 CPU 数,docker 并不能保证在任何情况下容器都能使用这么多的 CPU(因为这根本是不可能的)。

1.3 CPU 绑定

限制容器运行在某些 CPU 核

一般并不推荐在生产中这样使用

docker 允许调度的时候限定容器运行在哪个 CPU 上。

案例:

假如主机上有 4 个核,可以通过 --cpuset 参数让容器只运行在前两个核上:

[root@yixuan ~]# docker run --rm -it --cpuset-cpus=0,1 progrium/stress --cpu 2 
stress: info: [1] dispatching hogs: 2 cpu, 0 io, 0 vm, 0 hdd
stress: dbug: [1] using backoff sleep of 6000us
stress: dbug: [1] --> hogcpu worker 2 [6] forked
stress: dbug: [1] using backoff sleep of 3000us
stress: dbug: [1] --> hogcpu worker 1 [7] forked 

这样,监控中可以看到只有前面两个核 CPU 达到了 100% 使用率。

img

2. mem资源限制

docker 默认没有对容器内存进行限制,容器可以使用主机提供的所有内存。

不限制内存带来的问题:

这是非常危险的事情,如果某个容器运行了恶意的内存消耗软件,或者代码有内存泄露,很可能会导致主机内存耗尽,因此导致服务不可用。可以为每个容器设置内存使用的上限,一旦超过这个上限,容器会被杀死,而不是耗尽主机的内存。 

限制内存带来的问题:

限制内存上限虽然能保护主机,但是也可能会伤害到容器里的服务。如果为服务设置的内存上限太小,会导致服务还在正常工作的时候就被 OOM 杀死;如果设置的过大,会因为调度器算法浪费内存。

合理做法:

1. 为应用做内存压力测试,理解正常业务需求下使用的内存情况,然后才能进入生产环境使用
2. 一定要限制容器的内存使用上限,尽量保证主机的资源充足,一旦通过监控发现资源不足,就进行扩容或者对容器进行迁移如果可以(内存资源充足的情况)
3. 尽量不要使用 swap,swap 的使用会导致内存计算复杂,对调度器非常不友好

docker 限制容器内存使用量:

docker 启动参数中,和内存限制有关的包括(参数的值一般是内存大小,也就是一个正数,后面跟着内存单位 b、k、m、g,分别对应 bytes、KB、MB、和 GB):
​
-m --memory:容器能使用的最大内存大小,最小值为 4m

如果限制容器的内存使用为 64M,在申请 64M 资源的情况下,容器运行正常(如果主机上内存非常紧张,并不一定能保证这一点):

[root@yixuan ~]# docker run --rm -it -m 64m progrium/stress --vm 1 --vm-bytes 64M --vm-hang 0
stress: info: [1] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd
stress: dbug: [1] using backoff sleep of 3000us
stress: dbug: [1] --> hogvm worker 1 [6] forked
stress: dbug: [6] allocating 67108864 bytes ...
stress: dbug: [6] touching bytes in strides of 4096 bytes ...
stress: dbug: [6] sleeping forever with allocated memory
​
容器可以正常运行。
-m 64m:限制你这个容器只能使用64M
--vm-bytes 64M:将内存撑到64兆是不会报错,因为我有64兆内存可用。
hang:就是卡在这里。
--vm:生成几个占用内存的进程

而如果申请 150M 内存,会发现容器里的进程被 kill 掉了(worker 6 got signal 9,signal 9 就是 kill 信号)

[root@yixuan ~]# docker run --rm -it -m 64m progrium/stress --vm 1 --vm-bytes 150M --vm-hang 0
stress: info: [1] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd
stress: dbug: [1] using backoff sleep of 3000us
stress: dbug: [1] --> hogvm worker 1 [6] forked
stress: dbug: [6] allocating 157286400 bytes ...
stress: dbug: [6] touching bytes in strides of 4096 bytes ...
stress: FAIL: [1] (416) <-- worker 6 got signal 9
stress: WARN: [1] (418) now reaping child worker processes
stress: FAIL: [1] (422) kill error: No such process
stress: FAIL: [1] (452) failed run completed in 1s

3. 限制IO

限制bps和iops bps是 byte per second ,每秒读写的数量

iops是 io per second ,每秒IO的次数

注:目前Block I0限额只对direct IO (不使用文件缓存)有效。

可以同过下面的参数控制容器的bps和iops;
​
--device-read-bps:限制读某个设备的bps.
--devce-write-bps:限制写某个设备的bps.
--device-read-iops:限制读某个设备的iops.
--device-write-iops: 限制写某个设备的iops.
​
限制情况下:
[root@newrain ~]# docker run -it --device-write-bps /dev/sda:30MB ubuntu
root@10845a98036e:/# time dd if=/dev/zero of=test.out bs=1M count=800 oflag=direct
结果如下图1
​
不限制情况下:
[root@newrain ~]# docker run -it  ubuntu
root@10845a98036e:/# time dd if=/dev/zero of=test.out bs=1M count=800 oflag=direct
结果如下图2

图1

343322cbb71a2f75bf94833be8ab0bc.jpg

图2

9ccce7aec3bea24dca0f399819c52ca.jpg

二、端口转发

1570429105816

使用端口转发解决容器端口访问问题

-p:创建应用容器的时候,一般会做端口映射,这样是为了让外部能够访问这些容器里的应用。可以用多个-p指定多个端口映射关系。

mysql应用端口转发:

查看本地地址:

[root@yixuan ~]# ip a 
...
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000link/ether 00:0c:29:9c:bf:66 brd ff:ff:ff:ff:ff:ffinet 192.168.246.141/24 brd 192.168.246.255 scope global dynamic ens33valid_lft 5217593sec preferred_lft 5217593secinet6 fe80::a541:d470:4d9a:bc29/64 scope link valid_lft forever preferred_lft forever

运行容器:使用-p作端口转发,把本地3307转发到容器的3306,其他参数需要查看发布容器的页面提示

[root@yixuan ~]# docker pull daocloud.io/library/mysql:5.7
[root@yixuan ~]# docker run -d --name mysql1 -p 3307:3306  -e MYSQL_ROOT_PASSWORD=Qf@123! daocloud.io/library/mysql:5.7
a4327dbddf665b4302c549320bff869b8a027c2e1eead363d84ce5d06acf2698
-e MYSQL_ROOT_PASSWORD= 设置环境变量,这里是设置mysql的root用户的密码

通过本地IP:192.168.246.141的3307端口访问容器mysql1内的数据库,出现如下提示恭喜你

1.安装一个mysql客户端
[root@yixuan ~]# yum install -y mysql
2.登录
[root@yixuan ~]# mysql -uroot -p'wx@123!' -h 192.168.246.141 -P3307
Welcome to the MariaDB monitor.  Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.7.26 MySQL Community Server (GPL)Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.MySQL [(none)]>
-P(大P):当使用-P标记时,Docker 会随机映射一个 32768~49900 的端口到内部容器开放的网络端口。如下:
[root@yixuan ~]# docker pull daocloud.io/library/redis
[root@yixuan ~]# docker images
REPOSITORY                   TAG        IMAGE ID            CREATED           SIZE
daocloud.io/library/redis    latest     598a6f110d01        2months ago       118MB
[root@yixuan ~]# docker run --name myredis -P -d daocloud.io/library/redis
ca06a026d84a0605d9a9ce6975389a79f4ab9a9a043a03f088cd909c1fe52e29
[root@yixuan ~]# docker ps 
CONTAINER ID        IMAGE                           COMMAND                  CREATED             STATUS              PORTS                               NAMES
ca06a026d84a        daocloud.io/library/redis       "docker-entrypoint.s…"   22 seconds ago      Up 21 seconds       0.0.0.0:32768->6379/tcp             myredis

从上面的结果中可以看出,本地主机的32768端口被映射到了redis容器的6379端口上,也就是说访问本机的32768端口即可访问容器内redis端口。

在别的机器上通过上面映射的端口32768连接这个容器的redis

[root@docker-server2 ~]# yum install -y redis
[root@docker-server2 ~]# redis-cli -h 192.168.246.141 -p 32768
192.168.246.141:32768> ping
PONG
192.168.246.141:32768>

三、容器卷

把本地宿主机上面的某一个目录挂载到容器里面的目录去。这两个目录都不用提前存在,会自动创建

新卷只能在容器创建过程当中挂载

[root@yixuan ~]# docker run -it --name testnginx -v /test:/test2 daocloud.io/library/nginx /bin/bash
root@86320e734cd1:/# ls
root@86320e734cd1:/# ctrl+p+q  #退出
测试:
[root@yixuan ~]# cd /test/
[root@yixuan test]# ls
[root@yixuan test]# touch a.txt 
[root@yixuan test]# cd
[root@yixuan ~]# docker exec -it testnginx /bin/bash
root@86320e734cd1:/# cd test2/
root@86320e734cd1:/test2# ls
a.txt
共享文件:
[root@yixuan ~]# mkdir /dir
[root@yixuan ~]# vim /dir/a.txt
123
[root@yixuan ~]# docker run -it --name testnginx2 -v /dir/a.txt:/dir1/a.txt daocloud.io/library/nginx /bin/bash
root@f899be627552:/# cat dir1/a.txt 
123
root@f899be627552:/#
注意:如果是共享文件,修改宿主机上面的文件内容,容器里面的文件不会同步更新,如果在容器里面进行修改文件,本地会同步。

共享其他容器的卷(其他容器用同一个卷):

[root@yixuan ~]# docker run -it --name testnginx1 --volumes-from testnginx daocloud.io/library/nginx /bin/bash
root@50e6f726335c:/# ls
bin   dev  home  lib64	mnt  proc  run	 srv  test2  usr
boot  etc  lib	 media	opt  root  sbin  sys  tmp    var
root@50e6f726335c:/# cd test2/
root@50e6f726335c:/test2# ls
a.txt

实际应用中可以利用多个-v选项把宿主机上的多个目录同时共享给新建容器:

比如:

# docker run -it -v /abc:/abc -v /def:/def 1ae9

四、部署centos7容器应用

镜像下载:

[root@yixuan ~]# docker pull daocloud.io/library/centos:7

systemd 整合:

因为 systemd 要求 CAPSYSADMIN 权限,从而得到了读取到宿主机 cgroup 的能力,CentOS7 中已经用 fakesystemd 代替了 systemd 。 但是我们使用systemd,可用参考下面的 Dockerfile:
[root@yixuan ~]# mkdir test
[root@yixuan ~]# cd test/
[root@yixuan test]# vim Dockerfile
FROM daocloud.io/library/centos:7
MAINTAINER "soso"  soso@qq.com
ENV container dockerRUN yum -y swap -- remove fakesystemd -- install systemd systemd-libs
RUN yum -y update; yum clean all; \
(cd /lib/systemd/system/sysinit.target.wants/; for i in *; do [ $i == systemd-tmpfiles-setup.service ] || rm -f $i; done); \
rm -f /lib/systemd/system/multi-user.target.wants/*;\
rm -f /etc/systemd/system/*.wants/*;\
rm -f /lib/systemd/system/local-fs.target.wants/*; \
rm -f /lib/systemd/system/sockets.target.wants/*udev*; \
rm -f /lib/systemd/system/sockets.target.wants/*initctl*; \
rm -f /lib/systemd/system/basic.target.wants/*;\
rm -f /lib/systemd/system/anaconda.target.wants/*;VOLUME [ "/sys/fs/cgroup" ]CMD ["/usr/sbin/init"]

这个Dockerfile删除fakesystemd 并安装了 systemd。然后再构建基础镜像:

[root@yixuan test]# docker build -t local/c7-systemd .

执行没有问题这就生成一个包含 systemd 的应用容器示例

[root@yixuan test]# docker images
REPOSITORY         TAG                 IMAGE ID            CREATED             SIZE
local/c7-systemd   latest              a153dcaa642e        6 minutes ago       391MB

为了使用像上面那样包含 systemd 的容器,需要创建一个类似下面的Dockerfile:

[root@yixuan test]# mkdir http
[root@yixuan test]# cd http/
[root@yixuan http]# vim Dockerfile
FROM local/c7-systemd
RUN yum -y install httpd; yum clean all; systemctl enable httpd.service
EXPOSE 80
CMD ["/usr/sbin/init"]

构建镜像:

[root@yixuan http]# docker build -t local/c7-systemd-httpd .

运行包含 systemd 的应用容器:

为了运行一个包含 systemd 的容器,需要使用--privileged选项, 并且挂载主机的 cgroups 文件夹。 下面是运行包含 systemd 的 httpd 容器的示例命令:

[root@yixuan http]# docker run --privileged -tid -v /sys/fs/cgroup:/sys/fs/cgroup:ro -p 80:80 local/c7-systemd-httpd
--privileged:授权提权。让容器内的root用户拥有正真root权限(有些权限是没有的)

注意:如果不加会运行在前台(没有用-d),可以用ctrl+p+q放到后台去

测试可用:

[root@yixuan http]# yum install -y elinks
[root@yixuan http]# elinks --dump http://192.168.246.141  #apache的默认页面Testing 123..This page is used to test the proper operation of the [1]Apache HTTPserver after it has been installed. If you can read this page it meansthat this site is working properly. This server is powered by [2]CentOS.

再来个安装openssh-server的例子:

[root@yixuan http]# cd ..
[root@yixuan test]# mkdir ssh
[root@yixuan test]# cd ssh/
[root@yixuan ssh]# vim Dockerfile
FROM local/c7-systemd
RUN yum -y install openssh-server; yum clean all; systemctl enable sshd.service
RUN echo 1 | passwd --stdin root
EXPOSE 22
CMD ["/usr/sbin/init"]
[root@yixuan ssh]# docker build --rm -t local/c7-systemd-sshd .
[root@yixuan ssh]# docker run --privileged -tid -v /sys/fs/cgroup:/sys/fs/cgroup:ro -p 2222:22 local/c7-systemd-sshd
[root@yixuan ssh]# ssh 192.168.246.141 -p 2222
[root@ce1af52a6f6c ~]# 

五、docker数据存储位置

查看存储路径
[root@yixuan ~]# docker info | grep RootDocker Root Dir: /var/lib/docker
 
修改默认存储位置:
在dockerd的启动命令后面追加--data-root参数指定新的位置
[root@yixuan ~]# vim  /usr/lib/systemd/system/docker.service
ExecStart=/usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock --data-root=/data[root@yixuan ~]# systemctl daemon-reload 
[root@yixuan ~]# systemctl restart docker
查看是否生效:
[root@yixuan ~]# docker info | grep RootDocker Root Dir: /data[root@yixuan ~]# cd /data/
[root@yixuan data]# ls
builder  buildkit  containers  image  network  overlay2  plugins  runtimes  swarm  tmp  trust  volumes

六、docker网络

容器网络分类

查看当前网络:

[root@yixuan ~]# docker network list
NETWORK ID          NAME                DRIVER              SCOPE
9b902ee3eafb        bridge              bridge              local
140a9ff4bb94        host                host                local
d1210426b3b0        none                null                local

docker安装后,默认会创建三种网络类型,bridge、host和none以及自定义网络模式

1、bridge:网络桥接

默认情况下启动、创建容器都是用该模式,所以每次docker容器重启时会按照顺序获取对应ip地址。

2、none:无指定网络

启动容器时,可以通过--network=none,docker容器不会分配局域网ip 

3、host:主机网络

 docker容器和主机共用一个ip地址。使用host网络创建容器:
[root@yixuan ~]# docker run -it --name testnginx2 --net host 98ebf73ab
[root@yixuan ~]# netstat -lntp | grep 80
tcp6       0      0 :::80                   :::*                    LISTEN      3237/docker-proxy
浏览器访问宿主ip地址

4、固定ip:

创建固定Ip的容器:

4.1、创建自定义网络类型,并且指定网段
[root@yixuan ~]# docker network create --subnet=192.168.0.0/16 staticnet
4efd309244c6ad70eda2d047a818a3aec5b162f5ca29fb6024c09a5efbf15854
通过docker network ls可以查看到网络类型中多了一个staticnet:
[root@yixuan ~]# docker network ls
NETWORK ID          NAME                DRIVER              SCOPE
9b902ee3eafb        bridge              bridge              local
140a9ff4bb94        host                host                local
d1210426b3b0        none                null                local
4efd309244c6        staticnet           bridge              local
 4.2、使用新的网络类型创建并启动容器
 [root@yixuan ~]# docker run -itd --name userserver --net staticnet --ip 192.168.0.2 daocloud.io/library/centos:7
 通过docker inspect可以查看容器ip为192.168.0.2:
 [root@yixuan ~]# docker inspect userserver | grep -i ipaddress"SecondaryIPAddresses": null,"IPAddress": "","IPAddress": "192.168.0.2",
关闭容器并重启,发现容器ip并未发生改变

5、自定义网络模式

自定义网络模式:Docker 还允许创建自定义网络来实现更灵活的网络配置。在自定义网络模式下,可以创建一个独立的网络,并将容器连接到该网络中。这样可以在自定义网络中实现容器之间的通信,同时也可以通过网络的连接方式将容器连接到宿主机网络或其他网络。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/209151.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【TiDB理论知识04】TiKV-分布式事务与MVCC

分布式事务 下面一个事务 里面有两个更新,分别将id1的Tom改为Jack,将id2的zhangsan 改为 lisi。在MySQL中这个事务很普通&#xff0c;但是在分布式数据库TiDB 中的会遇到什么问题呢&#xff1f; begin; (1,Tom) --> (1,Jack) (2,zhangsan) --> (2,lisi) commit; 比如(…

玩转大数据11:数据可视化与交互式分析

1. 引言 数据可视化和交互式分析是大数据领域中的重要方面。随着大数据时代的到来&#xff0c;数据量越来越大&#xff0c;数据类型越来越复杂&#xff0c;传统的数据处理和分析方法已经无法满足我们的需求。数据可视化可以将复杂的数据以简单、直观的方式呈现出来&#xff0c…

JVM 性能调优及监控诊断工具 jps、jstack、jmap、jhat、jstat、hprof 使用详解

目录 一. 前言 二. jps&#xff08;Java Virtual Machine Process Status Tool&#xff09; 三. jstack 四. jmap&#xff08;Memory Map&#xff09;和 jhat&#xff08;Java Heap Analysis Tool&#xff09; 五. jstat&#xff08;JVM统计监测工具&#xff09; 六. hpro…

EMC VNX Unified存储NAS控制台常见问题解答

每次遇到VNX unfied的case就是一坨屎&#xff0c;很多客户根本不理解什么是Unifed storage&#xff0c;EMC的Clariion中端存储系统还分Block和Unified的产品。这个blog就是简单介绍一下VNX Unified存储的管理控制台&#xff0c;英文是 control station, 简称为CS。 顾名思义&a…

苍穹影视V20七彩视界/免授权开源源码/热门影视APP源码带后台+带安装教程

源码简介&#xff1a; 苍穹影视V20七彩视界&#xff0c;它是免授权开源源码&#xff0c;作为影视APP源码&#xff0c;它带后台&#xff0c;也带安装教程。 苍穹影视 V20 全新后台七彩视界免受权开源源码此版本为天穹公益版开源无解密安装教程 全新后台很是都雅&#xff0c;源码…

pair的用法,详解

1.pair是什么 pair名为二元组&#xff0c;顾名思义&#xff0c;就是储存二元组的。 2.pair的初始化 pair<第一个值类型, 第二个值类型> pr 第一个值类型&#xff1a;要储存的第一个值的数据类型第二个值类型&#xff1a;要储存的第二个值的数据类型pair<int, int&g…

伦茨科技宣布ST17H6x芯片已通过Apple Find My「查找」认证

深圳市伦茨科技有限公司&#xff08;以下简称“伦茨科技”&#xff09;发布ST17H6x Soc平台。成为继Nordic之后全球第二家取得Apple Find My「查找」认证的芯片厂家&#xff0c;该平台提供可通过Apple Find My认证的Apple查找&#xff08;Find My&#xff09;功能集成解决方案。…

年底不同外贸客户催单模板分享

最近工厂又爆单了&#xff0c;有些小的订单都没时间管了。时间过得很快&#xff0c;眼看就剩一个多月就春节&#xff0c;大家可以抓住这段时间催一下还有机会成单的客户&#xff0c;好为来年做准备&#xff01; 1.老客户模板 Dear xxx, Greetings. Do you have any new inqu…

FIR IP 学习记录

工具&#xff1a; matlab filterdesigner 工具箱 vivado FIR IP核 实现&#xff1a; 1.matlab设计与测试 先用matlab设计目标滤波器&#xff0c;得到滤波器的抽头系数。 如图&#xff0c;根据需求选择 低通/高通/带通/带阻。 由于vivado用的是FIR IP核&#xff0c;所以设…

什么是HTML?

✨前言✨ 本文主要介绍什么是HTML以及W3C &#x1f352;欢迎点赞 &#x1f44d; 收藏 ⭐留言评论 &#x1f4dd;私信必回哟&#x1f601; &#x1f352;博主将持续更新学习记录收获&#xff0c;友友们有任何问题可以在评论区留言 文章目录 什么是HTMLHTML发展史HTML的特点什么…

Linux权限理解(1)

目录 1.shell命令以及运行原理 2.Linux权限的概念 Linux权限管理 01.文件访问者的分类&#xff08;人&#xff09; 02.文件类型和访问权限&#xff08;事物属性&#xff09; a) 文件类型 b)基本权限 03.文件权限值的表示方法 04.文件访问权限的相关设置方法 a)chmod …

FPGA设计时序分析概念之Timing Arc

目录 1.1 Timing Arc概念 1.2 Timing Arcs的类型 1.3 Timing Sense(时序感知) 1.4 参考资料 1.1 Timing Arc概念 在时序工具对设计进行时序分析时&#xff0c;经常会看到一个概念Timing Arch(时序弧)。Timing Arc是一个信号一个单元Cell的输入引脚Pin到该单元输出引脚Outpu…

Redis主从架构中从节点的master_link_status:down

项目场景&#xff1a; 在搭建Redis的主从架构时&#xff0c;查看Redis的从节点状态时发现其连接的主节点的状态为down&#xff0c;并且查看主节点的状态时发现连接的从节点数量为0。 问题描述 原因分析&#xff1a; 可能在主节点中配置了密码&#xff0c;即requirepass。 解决…

算法:常见的链表算法

文章目录 链表算法两数相加两两交换链表中的节点重排链表合并K个升序链表K个一组翻转链表 总结 本篇总结常见的链表算法题和看他人题解所得到的一些收获 链表算法 关于链表的算法&#xff1a; 画图&#xff1a;画图可以解决绝大部分的数据结构的问题&#xff0c;任何的算法题…

视觉学习笔记12——百度飞浆框架的PaddleOCR 安装、标注、训练以及测试

系列文章目录 虚拟环境部署 参考博客1 参考博客2 参考博客3 参考博客4 文章目录 系列文章目录一、简单介绍1.OCR介绍2.PaddleOCR介绍 二、安装1.anaconda基础环境1&#xff09;anaconda的基本操作2&#xff09;搭建飞浆的基础环境 2.安装paddlepaddle-gpu版本1&#xff09;安装…

语言模型GPT与HuggingFace应用

受到计算机视觉领域采用ImageNet对模型进行一次预训练&#xff0c;使得模型可以通过海量图像充分学习如何提取特征&#xff0c;然后再根据任务目标进行模型微调的范式影响&#xff0c;自然语言处理领域基于预训练语言模型的方法也逐渐成为主流。以ELMo为代表的动态词向量模型开…

在线教育小程序正在成为教育行业的新生力量

教育数字化转型是目前教育领域的一个热门话题&#xff0c;那么到底什么是教育数字化转型&#xff1f;如何做好教育数字化转型&#xff1f; 教育数字化转型是利用信息技术和数字工具改变和优化教育的过程。主要特征包括技术整合、在线学习、个性化学习、大数据分析、云计算、虚拟…

【C++学习手札】基于红黑树封装模拟实现map和set

​ &#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 &#x1f49c;本文前置知识&#xff1a; 红黑树 ♈️今日夜电波&#xff1a;漂流—菅原纱由理 2:55━━━━━━️&#x1f49f;──────── 4:29 …

Appium获取toast方法封装

一、前置说明 toast消失的很快&#xff0c;并且通过uiautomatorviewer也不能获取到它的定位信息&#xff0c;如下图&#xff1a; 二、操作步骤 toast的class name值为android.widget.Toast&#xff0c;虽然toast消失的很快&#xff0c;但是它终究是在Dom结构中出现过&…

【计算机网络】HTTP请求

目录 前言 HTTP请求报文格式 一. 请求行 HTTP请求方法 GET和POST的区别 URL 二. 请求头 常见的Header 常见的额请求体数据类型 三. 请求体 结束语 前言 HTTP是应用层的一个协议。实际我们访问一个网页&#xff0c;都会像该网页的服务器发送HTTP请求&#xff0c;服务…