python与深度学习(十四):CNN和IKUN模型二

目录

  • 1. 说明
  • 2. IKUN模型的CNN模型测试
    • 2.1 导入相关库
    • 2.2 加载模型
    • 2.3 设置保存图片的路径
    • 2.4 加载图片
    • 2.5 图片预处理
    • 2.6 对图片进行预测
    • 2.7 显示图片
  • 3. 完整代码和显示结果
  • 4. 多张图片进行测试的完整代码以及结果

1. 说明

本篇文章是对上篇文章猫狗大战训练的模型进行测试。首先是将训练好的模型进行重新加载,然后采用opencv对图片进行加载,最后将加载好的图片输送给模型并且显示结果。

2. IKUN模型的CNN模型测试

2.1 导入相关库

在这里导入需要的第三方库如cv2,如果没有,则需要自行下载,自行下载时候一般建议镜像源,这样下载的快。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras

2.2 加载模型

把训练好的模型也加载进来,这里不用加载数据,因为数据是自制的。

# 加载my_ikun.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_ikun.h5')

2.3 设置保存图片的路径

将数据集的某个数据以图片的形式进行保存,便于测试的可视化,这里在之前已经分了测试集,因此设置图片路径即可。
在这里设置图片存储的位置,便于将图片进行存储。

# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test1', '4.jpg')

上述代码是将test文件夹里面的4.jpg进行测试,如果想测试其它的只需改为x.jpg即可。
在这里插入图片描述

2.4 加载图片

采用cv2对图片进行加载,用opencv库也就是cv2读取图片的时候,图片是三通道的,而训练的模型是三通道的,因此不只用取单通道,而是三通道,这里和之前的灰度图不同。

# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(150,150)
test_img = cv2.resize(test_img, (150,150))

2.5 图片预处理

对图片进行预处理,即进行归一化处理和改变形状处理,这是为了便于将图片输入给训练好的模型进行预测。因此在这里将形状改变为1501503的,前面的1是样本数,所以是(1,150,150,3)。

# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 150,150, 3)

2.6 对图片进行预测

将图片输入给训练好我的模型并且进行预测。
因为是二分类,所以预测的结果是1个概率值,所以需要进行处理, 大于0.5的是坤坤,小于0.5的是鸡。

# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
if y_pre_pro[0, class_id] > 0.5:print('png的所属类别:', '坤哥')
else:print('png的所属类别:', '鸡哥')

2.7 显示图片

对预测的图片进行显示,把预测的数字显示在图片上。
下面5行代码分别是创建窗口,设定窗口大小,显示图片,停留图片,清除内存。

# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()

3. 完整代码和显示结果

以下是完整的代码和图片显示结果。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras# 加载my_ikun.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_ikun.h5')
# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test1', '4.jpg')
# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(150,150)
test_img = cv2.resize(test_img, (150,150))
# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 150,150, 3)
# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
if y_pre_pro[0, class_id] > 0.5:print('png的所属类别:', '坤哥')
else:print('png的所属类别:', '鸡哥')
# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
1/1 [==============================] - 0s 315ms/step
test.png的预测概率: [[1.]]
test.png的预测概率: 1.0
png的所属类别: 坤哥

在这里插入图片描述

4. 多张图片进行测试的完整代码以及结果

为了测试更多的图片,引入循环进行多次测试,效果更好。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np# 加载my_ikun.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_ikun.h5')prepicture = int(input("input the number of test picture :"))
for i in range(prepicture):path1 = input("input the test picture path:")# 创建图片保存路径test_file_path = os.path.join('imgs', 'test1', path1)# 加载本地test.png图像image = cv2.imread(test_file_path)# 复制图片test_img = image.copy()# 将图片大小转换成(150,150)test_img = cv2.resize(test_img, (150, 150))# 预处理: 归一化 + reshapenew_test_img = (test_img / 255.0).reshape(1, 150, 150, 3)# 预测y_pre_pro = recons_model.predict(new_test_img, verbose=1)# 哪一类数字class_id = np.argmax(y_pre_pro, axis=1)[0]print('test.png的预测概率:', y_pre_pro)print('test.png的预测概率:', y_pre_pro[0, class_id])if y_pre_pro[0, class_id] > 0.5:print('png的所属类别:', '坤哥')else:print('png的所属类别:', '鸡哥')# # 显示cv2.namedWindow('img', 0)cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小cv2.imshow('img', image)cv2.waitKey()cv2.destroyAllWindows()
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
input the number of test picture :2
input the test picture path:3.jpg
1/1 [==============================] - 0s 170ms/step
test.png的预测概率: [[0.99739295]]
test.png的预测概率: 0.99739295
png的所属类别: 坤哥

在这里插入图片描述

input the test picture path:10.jpg
1/1 [==============================] - 0s 163ms/step
test.png的预测概率: [[0.09064844]]
test.png的预测概率: 0.09064844
png的所属类别: 鸡哥

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/20898.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Netty+springboot开发即时通讯系统笔记(一)

业务部分从sql开始: /*Navicat Premium Data TransferSource Server : localhostSource Server Type : MySQLSource Server Version : 50740Source Host : localhost:3306Source Schema : im-coreTarget Server Type : MySQLTarge…

20天学rust(一)和rust say hi

关注我,学习Rust不迷路 工欲善其事,必先利其器。第一节我们先来配置rust需要的环境和安装趁手的工具,然后写一个简单的小程序。 安装 Rust环境 Rust 官方有提供一个叫做 rustup 的工具,专门用于 rust 版本的管理,网…

windows下载安装FFmpeg

FFmpeg是一款强大的音视频处理软件,下面介绍如何在windows下下载安装FFmpeg 下载 进入官网: https://ffmpeg.org/download.html, 选择Windows, 然后选择"Windows builds from gyan.dev" 在弹出的界面中找到release builds, 然后选择一个版本&#xff0…

区块链实验室(13) - 在PBFT中节点的度与其流量的特征

前面若干实验说明了PBFT的耗时、流量与度的特征,见 区块链实验室(10) - 实例说明PBFT的共识过程, 区块链实验室(11) - PBFT耗时与流量特征, 区块链实验室(12) - 网络拓扑对PBFT共识流量的影响 同样的实验方案,在100个节点构成的无标度网络中完成100次交…

c++游戏制作指南(二):制作一个炫酷的启动界面(c++绘图)

🍿*★,*:.☆( ̄▽ ̄)/$:*.★* 🍿 🍟欢迎来到静渊隐者的csdn博文,本文是c游戏制作指南的一部🍟 🍕更多文章请点击下方链接🍕 🍨 c游戏制作指南&#x1f3…

ChatGPT辅助写论文:提升效率与创造力的利器

写作是人类最重要的交流方式之一,也是学术研究中不可或缺的环节。然而,写作并不是一件容易的事情,尤其是对于科研人员来说,他们需要花费大量的时间和精力来撰写高质量的论文,并且面临着各种各样的挑战,如语…

【Spring Boot】请求参数传json对象,后端采用(map)CRUD案例(101)

请求参数传json对象,后端采用(map)接收的前提条件: 1.Spring Boot 的Controller接受参数采用:RequestBody 2.需要一个Json工具类,将json数据转成Map; 工具类:Json转Map import com…

一文了解JavaScript 与 TypeScript的区别

TypeScript 和 JavaScript 是两种互补的技术,共同推动前端和后端开发。在本文中,我们将带您快速了解JavaScript 与 TypeScript的区别。 一、TypeScript 和 JavaScript 之间的区别 JavaScript 和 TypeScript 看起来非常相似,但有一个重要的区…

mac前端代码编辑 Sublime Text 4 Dev 中文v4.0(4151)

Sublime Text 4 for Mac是一款功能强大的代码编辑器,适合所有需要高效编写代码和进行代码管理的程序员使用。 快速响应:Sublime Text 4在加载文件和执行命令时非常快速,能够让用户在高效的开发过程中体验到无缝的交互。 多种语言支持&#…

express学习笔记4 - 热更新以及express-boom

我们每次改动代码的时候都要重启项目,现在我们给项目添加一个热更新 npm install --save-dev nodemon # or using yarn: yarn add nodemon -D 在package.json添加一行代码 "dev": "nodemon ./bin/www" 重启项目 然后随便做改动&#xff…

【话题】感觉和身边其他人有差距怎么办?也许自我调整很重要

每个人能力有限,水平高低不同,我们身在大环境里,虽然在同一个起跑线上,但是时间久了,你会发现,并越来越感觉到和身边其他人有了差距,慢慢的会有一定的落差感,怎么办呢!通…

java读写properties文件和xml文件,解决中文乱码问题

文章目录 前言一、properties文件1.1properties格式介绍1.2读取项目resource/templates下面properties并处理中文乱码问题1.3读取本地properties并处理中文乱码问题1.4修改properties文件 二、XML文件2.1xml文件格式2.2读取xml文件2.3写xml文件 前言 在开发当中我们经常需要用…

MySQL数据库——多表操作

文章目录 前言多表关系一对一关系一对多/多对一关系多对多关系 外键约束创建外键约束插入数据删除带有外键约束的表的数据删除外键约束 多表联合查询数据准备交叉连接查询内连接查询外连接查询左外连接查询右外连接查询满外连接查询 子查询子查询关键字ALL 关键字ANY 和 SOME 关…

Nacos 抽取公共配置

文章目录 创建一个公共配置文件其他配置文件引用springboot配置文件 创建一个公共配置文件 其他配置文件引用 ${变量} springboot配置文件 spring:cloud:nacos:discovery:server-addr: current.ip:8848namespace: word_register_proconfig:server-addr: current.ip:8848auto-r…

大模型时代下,算法工程师该何去何从?

目录 一、大模型时代的罪与罚1.1、快速演进的大模型技术1.2、模型表现出的惊人创造力1.3、大模型AI对算法工程师的威胁性 二、算法工程师的破与发2.1、破——大模型时代给算法工程师带来的新机遇2.2、发——算法工程师如何适应大模型时代的变革 三、大模型时代下人才发展洞察 大…

spring.config.location 手动指定配置文件文件

–spring.config.locationD:\javaproject\bangsun\ds-admin\ds-oper-mgr\src\main\resources\application.yml

IOCP简单了解

1.IOCP是什么 IOCP是Input/Output Completion Ports的简称,中文翻译为完成端口,完成是应用程序向系统发起一个IO操作,系统会在操作结束后,将IO操作完成结果通知应用程序,端口指的是机制 2.重叠IO(Overlappe…

代码调试2:coco数据集生成深度图

代码调试:coco数据集生成深度图 作者:安静到无声 个人主页 问题1:图片存在异常,跳过不处理 在获取深度图的时候,直接执代码,会产生以下错误:RuntimeError和ValueError。 因此我重新修改了代码,如果出现以下两种错误,则执行下一次循环,代码如下: 修改之后代码可以…

二叉树的相关题目

目录 1、根据二叉树创建字符串 2、二叉树的层序遍历 3、二叉树的最近公共祖先 4、搜索二叉树与双向链表 5、从前序与中序遍历序列构造二叉树 6、 从中序与后序遍历序列构造二叉树 7、二叉树的前序遍历(非递归实现) 8、二叉树的中序遍历&#xff08…

spring — Spring Security 5.7与6.0差异性对比

1. spring security Spring Security 是一个提供身份验证、授权和针对常见攻击保护的框架。 凭借对保护命令式和反应式应用程序的一流支持,它成为基于Spring的标准安全框架。 Spring Security 在最近几个版本中配置的写法都有一些变化,很多常见的方法都…