elasticsearch 内网下如何以离线的方式上传任意的huggingFace上的NLP模型(国内避坑指南)

es自2020年的8.x版本以来,就提供了机器学习的能力。我们可以使用es官方提供的工具eland,将hugging face上的NLP模型,上传到es集群中。利用es的机器学习模块,来运维部署管理模型。配合es的管道处理,来更加便捷的处理数据。
但是在国内操作,根据官方文档或者根据官方博客操作,有无穷无尽的坑。看着官方的文档写的很清楚,实际上操作的时候,还是操作不下来。这里写一个闭坑指南。
在你上车体验ES的机器学习之前,看看我这篇文章,肯定是会有收获的。因为我已经花了时间,踩了坑,并解决了它。

上传模型存在的坑

  1. 第一个坑是,es的机器学习,是收费的功能,白金版才能使用。这里需要开启试用才能用(试用期限为一个月)。如果只是体验,一个月已经足够了。体验效果不错,就可以找老板花钱了。(不过网上也有很多绿色的方案,可以用,不推荐,有法律风险,特别是商用)
  2. 开启白金试用,需要开启xpack安全认证,开启用户认证,在kibana上登录的时候,要使用elastic用户登录,否则无法开启试用,会告诉你无权限。
  3. 网络环境问题。如果你能开启科学上网,肯定可以避免问题。但是即使有科学上网,也只是体验一下。并不是生产实践方案,生产环境通常都是在内网环境下,即使能上网,也肯定是在国内网络环境下。这会有各种各样的问题。所以要做我们就做生产环境版本,要做就做离线版本。举一个最简答的例子,国内的网络,很难访问huggingface,去拉取模型。

    这里是我直接使用eland,上传模型的时候遇到的错误。

    docker run -it   -/u01/isi/.cache/huggingface/hub/:/usr/local/bin/eland_import_hub_model  --rm elastic/eland \
    eland_import_hub_model \
    --url http://elastic:123123@10.99.100.49:9200 \
    --hub-model-id sentence-transformers/clip-ViT-B-32-multilingual-v1 \
    --task-type text_embedding \
    --start
    
    

    报错为无法访问huggingface.co 国内域名污染导致的。如果可以挂代理,可以解决。如果没有代理,则看下边离线安装版本

    2023-11-22 09:40:30,738 INFO : Establishing connection to Elasticsearch
    2023-11-22 09:40:30,751 INFO : Connected to cluster named 'es' (version: 8.8.0)
    2023-11-22 09:40:30,752 INFO : Loading HuggingFace transformer tokenizer and model 'sentence-transformers/clip-ViT-B-32-multilingual-v1'
    'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /sentence-transformers/clip-ViT-B-32-multilingual-v1/resolve/main/tokenizer_config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7f50eb16cc10>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1/resolve/main/tokenizer_config.json
    2023-11-22 09:40:41,125 WARNING : 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /sentence-transformers/clip-ViT-B-32-multilingual-v1/resolve/main/tokenizer_config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7f50eb16cc10>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1/resolve/main/tokenizer_config.json
    'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /sentence-transformers/clip-ViT-B-32-multilingual-v1/resolve/main/config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7f50eb16cfd0>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1/resolve/main/config.json
    2023-11-22 09:40:51,583 WARNING : 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /sentence-transformers/clip-ViT-B-32-multilingual-v1/resolve/main/config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7f50eb16cfd0>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1/resolve/main/config.json
    Traceback (most recent call last):File "/usr/local/lib/python3.9/dist-packages/transformers/utils/hub.py", line 409, in cached_file
        resolved_file = hf_hub_download(File "/usr/local/lib/python3.9/dist-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fnreturn fn(*args, **kwargs)File "/usr/local/lib/python3.9/dist-packages/huggingface_hub/file_download.py", line 1291, in hf_hub_download
        raise LocalEntryNotFoundError(
    huggingface_hub.utils._errors.LocalEntryNotFoundError: Connection error, and we cannot find the requested files in the disk cache. Please try again or make sure your Internet connection is on.During handling of the above exception, another exception occurred:Traceback (most recent call last):File "/usr/local/bin/eland_import_hub_model", line 219, in <module>
        tm = TransformerModel(model_id=args.hub_model_id, task_type=args.task_type, es_version=cluster_version, quantize=args.quantize)File "/usr/local/lib/python3.9/dist-packages/eland/ml/pytorch/transformers.py", line 613, in __init__
        self._tokenizer = transformers.AutoTokenizer.from_pretrained(File "/usr/local/lib/python3.9/dist-packages/transformers/models/auto/tokenization_auto.py", line 634, in from_pretrained
        config = AutoConfig.from_pretrained(File "/usr/local/lib/python3.9/dist-packages/transformers/models/auto/configuration_auto.py", line 896, in from_pretrained
        config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)File "/usr/local/lib/python3.9/dist-packages/transformers/configuration_utils.py", line 573, in get_config_dict
        config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)File "/usr/local/lib/python3.9/dist-packages/transformers/configuration_utils.py", line 628, in _get_config_dict
        resolved_config_file = cached_file(File "/usr/local/lib/python3.9/dist-packages/transformers/utils/hub.py", line 443, in cached_file
        raise EnvironmentError(
    OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like sentence-transformers/clip-ViT-B-32-multilingual-v1 is not the path to a directory containing a file named config.json.
    Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'.
    

  4. 官方指定的向es中导入NLP模型的工具是Eland,下载和构建镜像也是有网络问题,这里需要指定国内的镜像源。
  5. 关于从hugging face上拉取NLP模型的问题。使用eland,它可以根据我们指定的模型id,去hugging face上拉取模型,但是还是国内的网络环境问题,死活拉不下来。因为无法访问huggingface域名。
  6. 目前,截止到2023年12月2号为止。es所谓的机器学习能力,仅支持文本类操作的模型。官方一直在说拥有跨模态的能力。实际上es并不支持,将图片转向量的模型导入到es中(例如常用的CLIP多模态模型,其实它是两部分,双塔模型,一个是将图片做embedding,转成向量。另一个模型是将我们的文本内容做embedding转为向量。其中图片转向量的模型,在es中是不支持上传的,文本转向量的模型是可以上传的)。如下所示,上传clip 将图片转为向量的模型。会报错
docker run -it   -v /u01/isi/.cache/huggingface/hub/sentence-transformers/clip-vit-base-patch32:/eland/sentence-transformers/clip-vit-base-patch32   --rm elastic/eland \
eland_import_hub_model \
--url http://elastic:123123@10.99.100.49:9200 \
--hub-model-id sentence-transformers/clip-vit-base-patch32 \
--task-type text_embedding \
--start

报错如下

准备工作

1. 需要搭建一个8.8以上版本的ES集群。默认会开启安全访问认证,不要关它。

2. 使用源码构建eland工具

3. 从huggingface上,离线下载NLP模型

4. 将模型上传到构建eland的服务器上

安装Elasticsearch 和kibana

 这里参看以下文章,跟着搭建集群就可以了(其实我整个导入的过程,也是参考的这篇文章,只是在国内安装,遇到了上述的坑)。

Elasticsearch:如何在 Elastic 中实现图片相似度搜索_es 相似度查询_Elastic 中国社区官方博客的博客-CSDN博客

 搭建的es版本>=8.8.0 ,一定要开安全认证,不然无法开启机器学习的试用,无法导入模型

需要kibana

开启试用

可以看到模型

安装准备Eland

eland是如何工作的

 Eland 可以从huggingFace上,把模型下载下来,并上传导es中。如下图所示

应该如何安装eland

这里提供在线的方式,和离线的方式。

Eland 可以通过 pip 从 PyPI 安装

在安装之前,我们需要安装好自己的 Python。

$ python --version
Python 3.10.2

可以使用 Pip 从 PyPI 安装 Eland:

python -m pip install eland

可以使用 Conda 从 Conda Forge 安装 Eland

conda install -c conda-forge eland

Docker容器的方式来使用它

希望在不安装 Eland 的情况下使用它,为了只运行可用的脚本,可以构建 Docker 容器。个人认为这种方式是最符合生产环境的部署方式。易交付。可以移植,不依赖网络环境,可以提前构件好,然后将eland镜像导入。

 第一步需要需要在有网的环境下,下载源码。可以将源码上传到有docker环境的服务器上。(如果没有docker环境,可以以最简单的方式来安装docker,这里就不提供方法了,可以网上搜搜文章,是在不行麻烦麻烦运维同事)

# 下载源码
git clone https://github.com/elastic/eland# 这里可以把源码上传到有docker环境的,且能够访问到es集群的服务器上。
cd eland这里注意,因为是在国内,我们先pass掉挂代理的事情(并不一定每个人都能挂代理)
这里需要先编辑一下dockerFile,添加指定国内的源。添加如下一行
RUN python3 -m pip install --no-cache-dir --disable-pip-version-check .[all] -i https://mirror.baidu.com/pypi/simple

#然后构建镜像
docker build -t elastic/eland .

在huggingface上下载所需的NLP模型

 在huggingface上找到该模型。(这里可以根据自己的需求,找到合适的模型)这里我以CLIP的模型为例(这个是clip中做文本embedding的模型),来下载。

https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1/tree/main

全部下载下来

然后上传到有eland的服务器上

使用eland 将离线模型导入到es集群中

我是以docker的方式来运行eland的。 

这次主要是加里一个数据卷,我把下载后的模型,放在了 /u01/isi/.cache/huggingface/hub/sentence-transformers/clip-ViT-B-32-multilingual-v1 下,然后加了一个数据拒卷。把模型映射到了容器中。这里因为服务器无法访问huggingface去拉取模型。所以用离线的方式。eland,会在运行过程中,检查本地有没有模型,如果有模型,就不用去huggingface上拉取了。

注意eland的挂载目录,docker中映射的是/eland/目录,这样才能读到本地下载好的模型!

docker run -it   -v /u01/isi/.cache/huggingface/hub/:/eland/   --rm elastic/eland \
eland_import_hub_model \
--url http://elastic:123123@10.99.100.49:9200 \
--hub-model-id sentence-transformers/clip-ViT-B-32-multilingual-v1 \
--task-type text_embedding \
--start

可以看到,这里已经成功的导入模型了。

然后在kiabna上,找到模型管理,刷新一下。

已经成功刷新了出来

测试使用模型

对内容进行文本嵌入,在kiban上执行以下内容。点击D旁边的菜单栏,找到 Dev tools

POST _ml/trained_models/sentence-transformers__clip-vit-b-32-multilingual-v1/_infer
{"docs" : [{"text_field": "Yellow mountain is the most beautiful mountain in China"}]
}

可以看到成功,应用模型,将文本内容,转成了向量。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/207244.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

吴恩达《机器学习》12-1:优化目标

在机器学习的旅程中&#xff0c;我们已经接触了多种学习算法。在监督学习中&#xff0c;选择使用算法 A 还是算法 B 的重要性逐渐减弱&#xff0c;而更关键的是如何在应用这些算法时优化目标。这包括设计特征、选择正则化参数等因素&#xff0c;这些在不同水平的实践者之间可能…

UG NX二次开发(C#)-求曲线在某一点处的法矢和切矢

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1、前言2、在UG NX中创建一个曲线3、直接放代码4、测试案例1、前言 最近确实有点忙了,好久没更新博客了。今天恰好有时间,就更新下,还请家人们见谅。 今天我们讲一下如何获取一条曲线上某一条曲…

注意力机制的快速学习

注意力机制的快速学习 注意力机制 将焦点聚焦在比较重要的事物上 我&#xff08;查询对象Q&#xff09;&#xff0c;这张图&#xff08;被查询对象V&#xff09; 我看一张图&#xff0c;第一眼&#xff0c;就会判断那些东西对我而言比较重要&#xff0c;那些对于我不重要&…

Pytorch从零开始实战12

Pytorch从零开始实战——DenseNet算法实战 本系列来源于365天深度学习训练营 原作者K同学 文章目录 Pytorch从零开始实战——DenseNet算法实战环境准备数据集模型选择开始训练可视化总结 环境准备 本文基于Jupyter notebook&#xff0c;使用Python3.8&#xff0c;Pytorch2.…

DevEco Studio 运行项目有时会自动出现.js和.map文件

运行的时候报错了&#xff0c;发现多了.js和.map&#xff0c;而且还不是一个&#xff0c;很多个。 通过查询&#xff0c;好像是之前已知问题了&#xff0c;给的建议是手动删除(一个一个删)&#xff0c;而且有的评论还说&#xff0c;一周出现了3次&#xff0c;太可怕了。 搜的过…

【网络编程】-- 02 端口、通信协议

网络编程 3 端口 端口表示计算机上的一个程序的进程 不同的进程有不同的端口号&#xff01;用来区分不同的软件进程 被规定总共0~65535 TCP,UDP&#xff1a;65535 * 2 在同一协议下&#xff0c;端口号不可以冲突占用 端口分类&#xff1a; 公有端口&#xff1a;0~1023 HT…

亚信安慧AntDB数据库中级培训ACP上线,中国移动总部首批客户认证通过

近日&#xff0c;亚信安慧AntDB数据库ACP&#xff08;AntDB Certified Professional&#xff09;中级培训课程于官网上线。在中国移动总部客户运维团队、现场项目部伙伴和AntDB数据库成员的协同组织下&#xff0c;首批中级认证学员顺利完成相关课程的培训&#xff0c;并获得Ant…

自然语言处理22-基于本地知识库的快速问答系统,利用大模型的中文训练集为知识库

大家好,我是微学AI,今天给大家介绍一下自然语言处理22-基于本地知识库的快速问答系统,利用大模型的中文训练集为知识库。我们的快速问答系统是基于本地知识库和大模型的最新技术,它利用了经过训练的中文大模型,该模型使用了包括alpaca_gpt4_data的开源数据集。 一、本地…

C //例10.3 从键盘读入若干个字符串,对它们按字母大小的顺序排序,然后把排好序的字符串送到磁盘文件中保存。

C程序设计 &#xff08;第四版&#xff09; 谭浩强 例10.3 例10.3 从键盘读入若干个字符串&#xff0c;对它们按字母大小的顺序排序&#xff0c;然后把排好序的字符串送到磁盘文件中保存。 IDE工具&#xff1a;VS2010 Note: 使用不同的IDE工具可能有部分差异。 代码块 方法…

2023_Spark_实验二十五:SparkStreaming读取Kafka数据源:使用Direct方式

SparkStreaming读取Kafka数据源&#xff1a;使用Direct方式 一、前提工作 安装了zookeeper 安装了Kafka 实验环境&#xff1a;kafka zookeeper spark 实验流程 二、实验内容 实验要求&#xff1a;实现的从kafka读取实现wordcount程序 启动zookeeper zk.sh start# zk.sh…

SNMP陷阱监控工具

SNMP&#xff08;简单网络管理协议&#xff09;是网络管理的一个重要方面&#xff0c;其中网络设备&#xff08;包括路由器、交换机和服务器&#xff09;在满足预定义条件时将SNMP陷阱作为异步通知发送到中央管理系统。简而言之&#xff0c;每当发生关键服务器不可用或硬件高温…

microblaze仿真

verdivcs (1) vlogan/vcs增加编译选项 -debug_accessall -kdb -lca (2) 在 simulation 选项中加入下面三个选项 -guiverdi UVM_VERDI_TRACE"UVM_AWARERALHIERCOMPWAVE" UVM_TR_RECORD 这里 -guiverdi是启动verdi 和vcs联合仿真。UVM_VERDI_TRACE 这里是记录 U…

linux高级篇基础理论七(Tomcat)

♥️作者&#xff1a;小刘在C站 ♥️个人主页&#xff1a; 小刘主页 ♥️不能因为人生的道路坎坷,就使自己的身躯变得弯曲;不能因为生活的历程漫长,就使求索的 脚步迟缓。 ♥️学习两年总结出的运维经验&#xff0c;以及思科模拟器全套网络实验教程。专栏&#xff1a;云计算技…

vue pc官网顶部导航栏组件

官网顶部导航分为一级导航和二级导航 导航的样子 文件的层级 router 文件层级 header 组件代码 <h1 class"logo-wrap"><router-link to"/"><img class"logo" :src"$config.company.logo" alt"" /><i…

直面双碳目标,优维科技携手奥意建筑打造绿色低碳建筑数智云平台

优维“双碳”战略合作建筑 为落实创新驱动发展战略&#xff0c;增强深圳工程建设领域科技创新能力&#xff0c;促进技术进步、科技成果转化和推广应用&#xff0c;根据《深圳市工程建设领域科技计划项目管理办法》《深圳市住房和建设局关于组织申报2022年深圳市工程建设领域科…

IO流(Java)

IO流 在学习IO流之前&#xff0c;我们首先了解一下File File File即文件或文件夹路径对象&#xff0c;其示例类可以是存在路径也可以是未创造路径 File有什么用 用于创建或操作文件或文件夹 File常用API API部分看得懂会查会用即可 IO流 IO(Input 读数据 Output写数据…

Qt/QML编程学习之心得:工程中的文件(十二)

Qt生成了工程之后,尤其在QtCreator产生对应的project项目之后,就如同VisualStudio一样,会产生相关的工程文件,那么这些工程文件都是做什么的呢?这里介绍一下。比如产生了一个Qt Widget application,当然如果Qt Quick Application工程会有所不同。 一、.pro和.pro.user …

企业计算机服务器中了360勒索病毒如何解密,勒索病毒解密数据恢复

网络技术的不断应用与发展&#xff0c;为企业的生产运营提供了极大便利&#xff0c;但随之而来的网络安全威胁也不断增加。近期&#xff0c;云天数据恢复中心接到很多企业的求助&#xff0c;企业的计算机服务器遭到了360后缀勒索病毒攻击&#xff0c;导致企业的所有数据被加密&…

『PyTorch学习笔记』如何快速下载huggingface模型/数据—全方法总结

如何快速下载huggingface模型/数据—全方法总结 文章目录 一. 如何快速下载huggingface大模型1.1. IDM(Windows)下载安装连接1.2. 推荐 huggingface 镜像站1.3. 管理huggingface_hub cache-system(缓存系统) 二. 参考文献 一. 如何快速下载huggingface大模型 推荐 huggingface…

希亦洗地机跟追觅洗地机入手哪个更好?追觅跟希亦洗地机深度评估

近年来&#xff0c;洗地机可以同时处理干湿垃圾&#xff0c;同时降低用户在清洁过程中的劳动强度&#xff0c;成为了家居清洁的新宠&#xff0c;但是目前市场上的品牌和型号层出不穷。用户往往很难挑选&#xff0c;本文挑选了两款目前口碑最好的两款洗地机给大家做一个全面的评…