深度学习疫情社交安全距离检测算法 - python opencv cnn 计算机竞赛

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 相关技术
    • 3.1 YOLOV4
    • 3.2 基于 DeepSort 算法的行人跟踪
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习疫情社交安全距离检测算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

安全的社交距离是公共预防传染病毒的途径之一。所以,在人群密集的区域进行社交距离的安全评估是十分重要的。社交距离的测量旨在保持个体之间的物理距离和减少相互接触的人群来减缓或阻止病毒传播,在抗击病毒和预防大流感中发挥重要作用。但时刻保持安全距离具有一定的难度,特别是在校园,工厂等场所,在这种情况下,开发智能摄像头等技术尤为关键。将人工智能,深度学习集成至安全摄像头对行人进行社交距离评估。现阶段针对疫情防范的要求,主要采用人工干预和计算机处理技术。人工干预存在人力资源要求高,风险大,时间成本高等等缺点。计算机处理等人工智能技术的发展,对社交安全距离的安全评估具有良好的效果。

2 实现效果

通过距离分类人群的高危险和低危险距离。

在这里插入图片描述
相关代码

import argparse
from utils.datasets import *
from utils.utils import *def detect(save_img=False):out, source, weights, view_img, save_txt, imgsz = \opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_sizewebcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')# Initializedevice = torch_utils.select_device(opt.device)if os.path.exists(out):shutil.rmtree(out)  # delete output folderos.makedirs(out)  # make new output folderhalf = device.type != 'cpu'  # half precision only supported on CUDA# Load modelgoogle_utils.attempt_download(weights)model = torch.load(weights, map_location=device)['model'].float()  # load to FP32# torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning# model.fuse()model.to(device).eval()if half:model.half()  # to FP16# Second-stage classifierclassify = Falseif classify:modelc = torch_utils.load_classifier(name='resnet101', n=2)  # initializemodelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weightsmodelc.to(device).eval()# Set Dataloadervid_path, vid_writer = None, Noneif webcam:view_img = Truetorch.backends.cudnn.benchmark = True  # set True to speed up constant image size inferencedataset = LoadStreams(source, img_size=imgsz)else:save_img = Truedataset = LoadImages(source, img_size=imgsz)# Get names and colorsnames = model.names if hasattr(model, 'names') else model.modules.namescolors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]# Run inferencet0 = time.time()img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img_ = model(img.half() if half else img) if device.type != 'cpu' else None  # run oncefor path, img, im0s, vid_cap in dataset:img = torch.from_numpy(img).to(device)img = img.half() if half else img.float()  # uint8 to fp16/32img /= 255.0  # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)# Inferencet1 = torch_utils.time_synchronized()pred = model(img, augment=opt.augment)[0]# Apply NMSpred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,fast=True, classes=opt.classes, agnostic=opt.agnostic_nms)t2 = torch_utils.time_synchronized()# Apply Classifierif classify:pred = apply_classifier(pred, modelc, img, im0s)# List to store bounding coordinates of peoplepeople_coords = []# Process detectionsfor i, det in enumerate(pred):  # detections per imageif webcam:  # batch_size >= 1p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()else:p, s, im0 = path, '', im0ssave_path = str(Path(out) / Path(p).name)s += '%gx%g ' % img.shape[2:]  # print stringgn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  #  normalization gain whwhif det is not None and len(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Print resultsfor c in det[:, -1].unique():n = (det[:, -1] == c).sum()  # detections per classs += '%g %ss, ' % (n, names[int(c)])  # add to string# Write resultsfor *xyxy, conf, cls in det:if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhwith open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:file.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label formatif save_img or view_img:  # Add bbox to imagelabel = '%s %.2f' % (names[int(cls)], conf)if label is not None:if (label.split())[0] == 'person':people_coords.append(xyxy)# plot_one_box(xyxy, im0, line_thickness=3)plot_dots_on_people(xyxy, im0)# Plot lines connecting peopledistancing(people_coords, im0, dist_thres_lim=(200,250))# Print time (inference + NMS)print('%sDone. (%.3fs)' % (s, t2 - t1))# Stream resultsif view_img:cv2.imshow(p, im0)if cv2.waitKey(1) == ord('q'):  # q to quitraise StopIteration# Save results (image with detections)if save_img:if dataset.mode == 'images':cv2.imwrite(save_path, im0)else:if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))vid_writer.write(im0)if save_txt or save_img:print('Results saved to %s' % os.getcwd() + os.sep + out)if platform == 'darwin':  # MacOSos.system('open ' + save_path)print('Done. (%.3fs)' % (time.time() - t0))

3 相关技术

3.1 YOLOV4

YOLOv4使用卷积网络 CSPDarknet-53 特征提取,网络结构模型如图 2 所示。在每个 Darknet-53的残块行加上 CSP(Cross
Stage Partial)结构13,将基础层划分为两部分,再通过跨层次结构的特征融合进行合并。并采用 FPN( feature pyramid
networks)结构加强特征金字塔,最后用不同层的特征的高分辨率来提取不同尺度特征图进行对象检测。最终网络输出 3
个不同尺度的特征图,在三个不同尺度特征图上分别使用 3 个不同的先验框(anchors)进行预测识别,使得远近大小目标均能得到较好的检测。
在这里插入图片描述
YOLOv4 的先验框尺寸是经PASCALL_VOC,COCO
数据集包含的种类复杂而生成的,并不一定完全适合行人。本研究旨在研究行人之间的社交距离,针对行人目标检测,利用聚类算法对 YOLOv4
的先验框微调,首先将行人数据集 F 依据相似性分为i个对象,即在这里插入图片描述,其中每个对象都具有 m
个维度的属性。聚类算法的目的是 i 个对象依据相似性聚集到指定的 j 个类簇,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中心。初始化 j 个 聚 类
中 心C c c c   1 2 , ,..., j,计算每一个对象到每一个聚类中心的欧式距离,见公式
在这里插入图片描述
之后,依次比较每个对象到每个聚类中心的距离,将对象分配至距离最近的簇类中心的类簇中,
得到 在这里插入图片描述个类簇S s s s  1 2 ,
,..., l,聚类算法中定义了类簇的原型,类簇中心就是类簇内所有对象在各个维度的均值,其公式见
在这里插入图片描述
相关代码

def check_anchors(dataset, model, thr=4.0, imgsz=640):# Check anchor fit to data, recompute if necessaryprint('\nAnalyzing anchors... ', end='')m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float()  # whdef metric(k):  # compute metricr = wh[:, None] / k[None]x = torch.min(r, 1. / r).min(2)[0]  # ratio metricbest = x.max(1)[0]  # best_xreturn (best > 1. / thr).float().mean()  #  best possible recallbpr = metric(m.anchor_grid.clone().cpu().view(-1, 2))print('Best Possible Recall (BPR) = %.4f' % bpr, end='')if bpr < 0.99:  # threshold to recomputeprint('. Attempting to generate improved anchors, please wait...' % bpr)na = m.anchor_grid.numel() // 2  # number of anchorsnew_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)new_bpr = metric(new_anchors.reshape(-1, 2))if new_bpr > bpr:  # replace anchorsnew_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid)  # for inferencem.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)  # lossprint('New anchors saved to model. Update model *.yaml to use these anchors in the future.')else:print('Original anchors better than new anchors. Proceeding with original anchors.')print('')  # newline

3.2 基于 DeepSort 算法的行人跟踪

YOLOv4中完成行人目标检测后生成边界框(Bounding box,Bbox),Bbox 含有包含最小化行人边框矩形的坐标信息,本研究引入
DeepSort 算法[18]完成对行人的质点进行跟踪,目的是为了在运动矢量分析时算行人安全社交距离中。首先,对行人进行质点化计算。其质点计算公式如
在这里插入图片描述
确定行人质点后,利用 DeepSort 算法实现对多个目标的精确定位与跟踪,其核心算法流程如图所示:
在这里插入图片描述
相关代码

class TrackState:'''单个轨迹的三种状态'''Tentative = 1 #不确定态Confirmed = 2 #确定态Deleted = 3 #删除态class Track:def __init__(self, mean, covariance, track_id, class_id, conf, n_init, max_age,feature=None):'''mean:位置、速度状态分布均值向量,维度(8×1)convariance:位置、速度状态分布方差矩阵,维度(8×8)track_id:轨迹IDclass_id:轨迹所属类别hits:轨迹更新次数(初始化为1),即轨迹与目标连续匹配成功次数age:轨迹连续存在的帧数(初始化为1),即轨迹出现到被删除的连续总帧数time_since_update:轨迹距离上次更新后的连续帧数(初始化为0),即轨迹与目标连续匹配失败次数state:轨迹状态features:轨迹所属目标的外观语义特征,轨迹匹配成功时添加当前帧的新外观语义特征conf:轨迹所属目标的置信度得分_n_init:轨迹状态由不确定态到确定态所需连续匹配成功的次数_max_age:轨迹状态由不确定态到删除态所需连续匹配失败的次数'''   self.mean = meanself.covariance = covarianceself.track_id = track_idself.class_id = int(class_id)self.hits = 1self.age = 1self.time_since_update = 0self.state = TrackState.Tentativeself.features = []if feature is not None:self.features.append(feature) #若不为None,初始化外观语义特征self.conf = confself._n_init = n_initself._max_age = max_agedef increment_age(self):'''预测下一帧轨迹时调用'''self.age += 1 #轨迹连续存在帧数+1self.time_since_update += 1 #轨迹连续匹配失败次数+1def predict(self, kf):'''预测下一帧轨迹信息'''self.mean, self.covariance = kf.predict(self.mean, self.covariance) #卡尔曼滤波预测下一帧轨迹的状态均值和方差self.increment_age() #调用函数,age+1,time_since_update+1def update(self, kf, detection, class_id, conf):'''更新匹配成功的轨迹信息'''self.conf = conf #更新置信度得分self.mean, self.covariance = kf.update(self.mean, self.covariance, detection.to_xyah()) #卡尔曼滤波更新轨迹的状态均值和方差self.features.append(detection.feature) #添加轨迹对应目标框的外观语义特征self.class_id = class_id.int() #更新轨迹所属类别self.hits += 1 #轨迹匹配成功次数+1self.time_since_update = 0 #匹配成功时,轨迹连续匹配失败次数归0if self.state == TrackState.Tentative and self.hits >= self._n_init:self.state = TrackState.Confirmed #当连续匹配成功次数达标时轨迹由不确定态转为确定态def mark_missed(self):'''将轨迹状态转为删除态'''if self.state == TrackState.Tentative:self.state = TrackState.Deleted #当级联匹配和IOU匹配后仍为不确定态elif self.time_since_update > self._max_age:self.state = TrackState.Deleted #当连续匹配失败次数超标'''该部分还存在一些轨迹坐标转化及状态判定函数,具体可参考代码来源'''

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/205766.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android hook式插件化详解

引言 Android插件化是一种将应用程序的功能模块化为独立的插件,并动态加载到主应用程序中的技术。通过插件化,开发者可以将应用程序的功能分解成独立的模块,每个模块可以作为一个插件单独开发、测试和维护,然后通过动态加载的方式集成到主应用程序中,实现功能的动态扩展和…

功能测试,接口测试,自动化测试,压力测试,性能测试,渗透测试,安全测试,具体是干嘛的?

软件测试是一个广义的概念&#xff0c;他包括了多领域的测试内容&#xff0c;比如&#xff0c;很多新手可能都听说&#xff1a;功能测试&#xff0c;接口测试&#xff0c;自动化测试&#xff0c;压力测试&#xff0c;性能测试&#xff0c;渗透测试&#xff0c;安全测试等&#…

CentOS系统中设置反向代理服务器的步骤

在CentOS系统中设置反向代理服务器可以帮助你隐藏原始服务器的细节&#xff0c;并提高服务器的安全性。以下是在CentOS系统中设置反向代理服务器的步骤概述&#xff1a; 安装反向代理软件&#xff1a; 常见的反向代理软件包括Nginx和Apache。你可以选择其中之一来作为你的反向…

【Git】error:failed to push some refs to ‘git@gitee.com:name/project.git‘

错误展示 今天在版本回退的时候&#xff0c;推送到gitee显示如下错误 先执行了git pull origin master&#xff0c;然后再执行push操作&#xff0c;也没有用 解决办法 执行git push -f origin master ,-f 表示强制推送。 结果 问题解决啦&#xff01;

区分node,npm,nvm

目录 一&#xff0c;nodejs二&#xff0c;npm三&#xff0c;nvm 区分node&#xff0c;npm&#xff0c;nvm 几年前学习前端的时候学习的就是htmlcssjs 三件套。 现在只学习这些已经不能满足需要了。 一&#xff0c;nodejs nodejs是编程语言javascript运行时环境。&#xff08;比…

项目架构-六边形架构的概述和实现

使用传统的分层架构&#xff0c;我们的所有依赖项都指向一个方向&#xff0c;上面的每一层都依赖于下面的层。传输层将依赖于交互器&#xff0c;交互器将依赖于持久层。 在六边形架构中&#xff0c;所有依赖项都指向内部——我们的核心业务逻辑对传输层或数据源一无所知。尽管如…

【深度学习】强化学习(一)强化学习定义

文章目录 一、强化学习问题1、交互的对象1. 智能体&#xff08;Agent&#xff09;2. 环境&#xff08;Environment&#xff09; 2、强化学习的基本要素1. 状态 &#x1d460;2. 动作 &#x1d44e;3. 策略 &#x1d70b;(&#x1d44e;|&#x1d460;)4. 状态转移概率 &#x1…

人工智能企业引入S-SDLC,推动安全能力大跃升,保障AI技术体系深化落地

某人工智能公司是国际知名的上市企业&#xff0c;核心技术处于世界前沿水平。多年来&#xff0c;该企业在智慧教育、智慧医疗、智慧城市、智慧司法、金融科技、智能汽车、运营商、消费者等领域进行深度技术赋能&#xff0c;深入推进各个行业的智能化、数字化转型建设。 人工智能…

【开源】基于Vue+SpringBoot的智慧家政系统

项目编号&#xff1a; S 063 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S063&#xff0c;文末获取源码。} 项目编号&#xff1a;S063&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 查询家政服…

简单实现Spring容器(一)

阶段1: 编写自己的Spring容器,实现扫描包,得到bean的class对象.思路: 使用 ElfSpringConfig.java 替代beans.xml文件作为配置文件,从中获取到: 1.扫描包,得到bean的class对象. 2.排除包下不是bean的 1.容器文件 ElfSpringApplicationContext.java 核心!!! package com.elf…

vuepress-----13、分割config

13、分割config config.js const headConfig require(./config/headConfig); const pluginsConfig require(./config/pluginsConfig); const themeConfig require(./config/themeConfig)module.exports {title: "小邵子",description: 小邵子的个人笔记,head: he…

Mybatis一级缓存与二级缓存

一、简介 数据库接收到sql语句后&#xff0c;需要词法/语法解析&#xff0c;优化sql语句&#xff0c;制定执行计划。多数情况下&#xff0c;相同的sql语句可能只是传入参数不同&#xff08;如where条件后的值不同...&#xff09;。 如果每次都需要经过上面的 词法/语法解析、语…

java基础之异常处理

1、概念 异常是程序中的一些错误&#xff0c;但并不是所有的错误都是异常&#xff0c;并且错误有时候是可以避免的。 2、异常发生的原因 用户输入了非法数据。要打开的文件不存在。网络通信时连接中断&#xff0c;或者JVM内存溢出。 3、三种类型的异常 检查性异常&#xff1a;…

Unity UGUI TextMeshPro实现输入中文和表情包(Emoji)表情

目录 实现中文显示 准备工作 1、打开Window——TextMeshPro——FontAssetCreator 2、把字体文件放入SourceFont中 3、把CharacterSet改为Characters from File 4、把字体库文件放入Characters File 5、设置好参数点击Generate Font Atlas等待完成后保存 6、把生成后保存…

科普小知识-3D 打印是什么?

3D 打印是什么&#xff1f;作为近年来备受关注的前沿科技&#xff0c;3D 打印技术正在不断改变着制造业、医疗领域、艺术设计等多个领域的面貌。其又被称为增材制造&#xff0c;是一种通过电脑设计&#xff0c;逐层堆叠材料来创建三维物体的技术。 3D 打印的基本原理 3D 打印…

【Ajax】发送get请求获取接口数据

编写html实现通过Ajax发送get请求并获取数据 代码实现 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title…

LinuxBasicsForHackers笔记 -- 管理用户环境变量

查看和修改环境变量 env – 您可以通过从任何目录在终端中输入 env 来查看所有默认环境变量。环境变量的名称始终为大写&#xff0c;如 HOME、PATH、SHELL 等。 查看所有环境变量 set – 查看所有环境变量&#xff0c;包括 shell 变量、局部变量和 shell 函数&#xff08;例…

2. PyTorch——Tensor和Numpy

2.1Tensor和Numpy Tensor和Numpy数组之间具有很高的相似性&#xff0c;彼此之间的互操作也非常简单高效。需要注意的是&#xff0c;Numpy和Tensor共享内存。由于Numpy历史悠久&#xff0c;支持丰富的操作&#xff0c;所以当遇到Tensor不支持的操作时&#xff0c;可先转成Numpy…

conda配置不同版本的python及依赖库--conda conda conda

一、conda介绍 Conda 是一个开源的软件包管理系统和环境管理系统&#xff0c;用于安装多个不同版本的软件包及其依赖关系&#xff0c;并在它们之间轻松切换。 Conda 是为 Python 程序创建的&#xff0c;适用于 Linux&#xff0c;OS X 和Windows Conda可以构建不同的环境&#…

【计算机网络学习之路】HTTP响应报文Cookie原理

目录 HTTP响应报文格式 一. 状态行 状态码与状态码描述 二. 响应头 Cookie原理 一. 前因 二. Cookie的状态管理 结束语 HTTP响应报文格式 HTTP响应报文分为四部分 状态行&#xff1a;包含三部分&#xff1a;协议版本&#xff0c;状态码&#xff0c;状态码描述响应头&a…